Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Caroline St., Baltimore, MD 21287, USA.
School of Informatics, Hunan University of Chinese Medicine, Changsha, 410208, China.
J Imaging Inform Med. 2024 Oct;37(5):2206-2215. doi: 10.1007/s10278-024-01104-y. Epub 2024 Apr 8.
Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.
PSMA PET/CT 的摄取分割和分类对于自动化全身肿瘤负担的确定非常重要。我们开发并评估了一种基于深度学习(DL)的自动框架,用于对 PSMA PET/CT 的摄取进行分割和分类。我们从两个机构中确定了 193 名患有生化复发性前列腺癌的患者的 [F] DCFPyL PET/CT 扫描,包括 137 名用于训练和内部测试的 [F] DCFPyL PET/CT 扫描,以及来自另一个机构的 56 名扫描。两名放射科医生将焦点标记为可疑或非恶性。使用两个独立的 CNN 开发了基于 DL 的分割。应用解剖学先验指导使 DL 框架专注于 PSMA 高摄取病变。通过 Dice、IoU、精度和召回率评估分割性能。使用多模态决策融合框架构建分类模型,并通过准确性、AUC、F1 分数、精度和召回率进行评估。在解剖学先验指导下,可疑病变的自动分割得到了改善,内部测试集的平均 Dice、IoU、精度和召回率分别为 0.700、0.566、0.809 和 0.660,外部测试集分别为 0.680、0.548、0.749 和 0.740。我们的多模态决策融合框架在内部测试集上的准确性、AUC、F1 分数、精度和召回率分别为 0.764、0.863、0.844、0.841 和 0.847,在外部测试集上的准确性、AUC、F1 分数、精度和召回率分别为 0.796、0.851、0.865、0.814 和 0.923,优于单模态和多模态 CNN。我们的解剖学先验指导策略有助于 PSMA PET 上的基于 DL 的病变分割。我们的分类框架可以通过良好的准确性将可疑焦点与那些不怀疑癌症的焦点区分开来。