Suppr超能文献

使用深度学习从PET/CT扫描中检测局部前列腺癌复发

Detection of Local Prostate Cancer Recurrence from PET/CT Scans Using Deep Learning.

作者信息

Korb Marko, Efetürk Hülya, Jedamzik Tim, Hartrampf Philipp E, Kosmala Aleksander, Serfling Sebastian E, Dirk Robin, Michalski Kerstin, Buck Andreas K, Werner Rudolf A, Schlötelburg Wiebke, Ankenbrand Markus J

机构信息

Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany.

Department of Nuclear Medicine, Dr. Burhan Nalbantoglu State Hospital, Nicosia 99010, Cyprus.

出版信息

Cancers (Basel). 2025 May 6;17(9):1575. doi: 10.3390/cancers17091575.

Abstract

Prostate cancer (PC) is a leading cause of cancer-related deaths in men worldwide. PSMA-directed positron emission tomography (PET) has shown promising results in detecting recurrent PC and metastasis, improving the accuracy of diagnosis and treatment planning. To evaluate an artificial intelligence (AI) model based on [F]-prostate specific membrane antigen (PSMA)-1007 PET datasets for the detection of local recurrence in patients with prostate cancer. We retrospectively analyzed 1404 [F]-PSMA-1007 PET/CTs from patients with histologically confirmed prostate cancer. Artificial neural networks were trained to recognize the presence of local recurrence based on the PET data. First, the hyperparameters were optimized for an initial model (model A). Subsequently, the bladder was localized using an already published model and a model (model B) was trained only on a 20 cm cube around the bladder. Finally, two separate models were trained on the same section depending on the prostatectomy status (model C (post-prostatectomy) and model D (non-operated)). Model A achieved an accuracy of 56% on the validation data. By restricting the region to the area around the bladder, Model B achieved a validation accuracy of 71%. When validating the specialized models according to prostatectomy status, model C achieved an accuracy of 77% and model D an accuracy of 77%. All models achieved accuracies of almost 100% on the training data, indicating overfitting. For the presented task, 1404 examinations were insufficient to reach an accuracy of over 90% even when employing data augmentation, including additional metadata and performing automated hyperparameter optimization. The low F1-score and AUC values indicate that none of the presented models produce reliable results. However, we will facilitate future research and the development of better models by openly sharing our source code and all pre-trained models for transfer learning.

摘要

前列腺癌(PC)是全球男性癌症相关死亡的主要原因。前列腺特异性膜抗原(PSMA)导向的正电子发射断层扫描(PET)在检测复发性PC和转移方面已显示出有前景的结果,提高了诊断和治疗计划的准确性。为了评估基于[F] - 前列腺特异性膜抗原(PSMA)-1007 PET数据集的人工智能(AI)模型用于检测前列腺癌患者的局部复发情况。我们回顾性分析了1404例经组织学确诊的前列腺癌患者的[F] - PSMA - 1007 PET/CT图像。基于PET数据训练人工神经网络以识别局部复发的存在。首先,针对初始模型(模型A)优化超参数。随后,使用已发表的模型定位膀胱,并仅在膀胱周围20厘米的立方体上训练模型(模型B)。最后,根据前列腺切除状态在同一区域训练两个单独的模型(模型C(前列腺切除术后)和模型D(未手术))。模型A在验证数据上的准确率为56%。通过将区域限制在膀胱周围区域,模型B的验证准确率达到71%。根据前列腺切除状态验证专门模型时,模型C的准确率为77%,模型D的准确率为77%。所有模型在训练数据上的准确率几乎达到100%,表明存在过拟合。对于所提出的任务,即使采用数据增强,包括额外的元数据和进行自动超参数优化,1404次检查也不足以达到超过90%的准确率。低F1分数和AUC值表明所提出的模型均未产生可靠的结果。然而,我们将通过公开共享我们的源代码和所有预训练模型以进行迁移学习,促进未来的研究和更好模型的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c3/12071661/3ebc9fd3fd60/cancers-17-01575-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验