Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Med Phys. 2024 May;51(5):3265-3274. doi: 10.1002/mp.17064. Epub 2024 Apr 8.
The detectability performance of a CT scanner is difficult to precisely quantify when nonlinearities are present in reconstruction. An efficient detectability assessment method that is sensitive to small effects of dose and scanner settings is desirable. We previously proposed a method using a search challenge instrument: a phantom is embedded with hundreds of lesions at random locations, and a model observer is used to detect lesions. Preliminary tests in simulation and a prototype showed promising results.
In this work, we fabricated a full-size search challenge phantom with design updates, including changes to lesion size, contrast, and number, and studied our implementation by comparing the lesion detectability from a nonprewhitening (NPW) model observer between different reconstructions at different exposure levels, and by estimating the instrument sensitivity to detect changes in dose.
Designed to fit into QRM anthropomorphic phantoms, our search challenge phantom is a cylindrical insert 10 cm wide and 4 cm thick, embedded with 12 000 lesions (nominal width of 0.6 mm, height of 0.8 mm, and contrast of -350 HU), and was fabricated using PixelPrint, a 3D printing technique. The insert was scanned alone at a high dose to assess printing accuracy. To evaluate lesion detectability, the insert was placed in a QRM thorax phantom and scanned from 50 to 625 mAs with increments of 25 mAs, once per exposure level, and the average of all exposure levels was used as high-dose reference. Scans were reconstructed with three different settings: filtered-backprojection (FBP) with Br40 and Br59, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) with strength level 5 and Br59 kernel. An NPW model observer was used to search for lesions, and detection performance of different settings were compared using area under the exponential transform of free response ROC curve (AUC). Using propagation of uncertainty, the sensitivity to changes in dose was estimated by the percent change in exposure due to one standard deviation of AUC, measured from 5 repeat scans at 100, 200, 300, and 400 mAs.
The printed insert lesions had an average position error of 0.20 mm compared to printing reference. As the exposure level increases from 50 mAs to 625 mAs, the lesion detectability AUCs increase from 0.38 to 0.92, 0.42 to 0.98, and 0.41 to 0.97 for FBP Br40, FBP Br59, and SAFIRE Br59, respectively, with a lower rate of increase at higher exposure level. FBP Br59 performed best with AUC 0.01 higher than SAFIRE Br59 on average and 0.07 higher than FBP Br40 (all P < 0.001). The standard deviation of AUC was less than 0.006, and the sensitivity to detect changes in mAs was within 2% for FBP Br59.
Our 3D-printed search challenge phantom with 12 000 submillimeter lesions, together with an NPW model observer, provide an efficient CT detectability assessment method that is sensitive to subtle effects in reconstruction and is sensitive to small changes in dose.
当重建存在非线性时,很难精确量化 CT 扫描仪的检测性能。需要一种灵敏的、对剂量和扫描参数微小变化敏感的高效检测评估方法。我们之前提出了一种使用搜索挑战工具的方法:将数百个随机位置的病变嵌入到体模中,然后使用模型观察者进行检测。在模拟和原型机中的初步测试结果很有前景。
在这项工作中,我们使用设计更新制造了全尺寸搜索挑战体模,包括病变大小、对比度和数量的变化,并通过比较不同重建下非预白化(NPW)模型观察者的病变检测性能和估计仪器检测剂量变化的灵敏度,来研究我们的实现方法。
我们的搜索挑战体模设计成可放入 QRM 人体模型中,它是一个 10cm 宽、4cm 厚的圆柱形插件,嵌入了 12000 个病变(标称宽度为 0.6mm,高度为 0.8mm,对比度为-350HU),使用 PixelPrint 3D 打印技术制造。插件在高剂量下单独扫描,以评估打印精度。为了评估病变检测性能,将插件放置在 QRM 胸部体模中,并以 25mAs 的增量从 50 到 625mAs 进行扫描,每个曝光水平扫描一次,然后使用所有曝光水平的平均值作为高剂量参考。使用三种不同的设置进行扫描重建:Br40 和 Br59 的滤波反投影(FBP),以及强度级别为 5 和 Br59 内核的正弦图确认迭代重建(SAFIRE)。使用 NPW 模型观察者进行病变搜索,并使用指数变换自由响应 ROC 曲线下面积(AUC)比较不同设置的检测性能。使用不确定度传播,通过 AUC 标准差的一个标准差导致的曝光变化来估计剂量变化的灵敏度,从 100、200、300 和 400mAs 的 5 次重复扫描中测量。
与打印参考相比,打印插入件中的病变平均位置误差为 0.20mm。随着曝光水平从 50mAs 增加到 625mAs,FBP Br40、FBP Br59 和 SAFIRE Br59 的病变检测 AUC 分别从 0.38 增加到 0.92、0.42 增加到 0.98 和 0.41 增加到 0.97,高曝光水平下的增长率较低。FBP Br59 的 AUC 平均比 SAFIRE Br59 高 0.01,比 FBP Br40 高 0.07(均 P<0.001)。AUC 的标准差小于 0.006,FBP Br59 对 mAs 变化的检测灵敏度在 2%以内。
我们的 3D 打印搜索挑战体模带有 12000 个亚毫米病变,以及 NPW 模型观察者,提供了一种高效的 CT 检测性能评估方法,对重建中的细微影响敏感,并且对剂量的微小变化敏感。