Zimmermann Rollin Isabela, Papoti Daniel, Bishop Mitchell, Szczupak Diego, Corigliano Michael R, Hitchens T Kevin, Zhang Bei, Pell Sarah K A, Guretse Simeon S, Dureux Audrey, Murai Takeshi, Sukoff Rizzo Stacey J, Klassen L Martyn, Zeman Peter, Gilbert Kyle M, Menon Ravi S, Lin Meng-Kuan, Everling Stefan, Silva Afonso C, Schaeffer David J
Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States.
Imaging Neurosci (Camb). 2025 Feb 21;3. doi: 10.1162/imag_a_00483. eCollection 2025.
The use of the common marmoset () for neuroscientific inquiry has grown precipitously over the past two decades. Despite windfalls of grant support from funding initiatives in North America, Europe, and Asia to model human brain diseases in the marmoset, marmoset-specific apparatus are of sparse availability from commercial vendors and thus are often developed and reside within individual laboratories. Through our collective research efforts, we have designed and vetted myriad designs for awake or anesthetized magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), as well as focused ultrasound (FUS), electrophysiology, optical imaging, surgery, and behavior in marmosets across the age-span. This resource makes these designs openly available, reducing the burden of de novo development across the marmoset field. The computer-aided-design (CAD) files are publicly available through the Marmoset Brain Connectome (MBC) resource (https://www.marmosetbrainconnectome.org/apparatus/) and include dozens of downloadable CAD assemblies, software and online calculators for marmoset neuroscience. In addition, we make available a variety of vetted touchscreen and task-based fMRI code and stimuli. Here, we highlight the online interface and the development and validation of a few yet unpublished resources: software to automatically extract the head morphology of a marmoset from a CT and produce a 3D printable helmet for awake neuroimaging, and the design and validation of 8-channel and 14-channel receive arrays for imaging deep structures during anatomical and functional MRI.
在过去二十年中,普通狨猴()在神经科学研究中的应用急剧增加。尽管北美、欧洲和亚洲的资助计划提供了大量资金支持,用于在狨猴身上模拟人类脑部疾病,但商业供应商提供的狨猴专用设备却很少,因此这些设备通常是在各个实验室自行开发和使用的。通过我们的共同研究努力,我们设计并审核了多种用于清醒或麻醉状态下的磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)以及聚焦超声(FUS)、电生理学、光学成像、手术和行为研究的设计,涵盖了不同年龄段的狨猴。本资源将这些设计公开提供,减轻了整个狨猴研究领域从头开发的负担。计算机辅助设计(CAD)文件可通过狨猴脑连接组(MBC)资源(https://www.marmosetbrainconnectome.org/apparatus/)公开获取,其中包括数十个可下载的CAD组件、用于狨猴神经科学的软件和在线计算器。此外,我们还提供了经过审核的各种触摸屏和基于任务的功能磁共振成像代码及刺激。在此,我们重点介绍在线界面以及一些尚未发表的资源的开发和验证:用于从CT自动提取狨猴头部形态并生成用于清醒神经成像的3D可打印头盔的软件,以及用于在解剖和功能MRI期间对深部结构进行成像的8通道和14通道接收阵列的设计与验证。