State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Nat Commun. 2024 Apr 8;15(1):2999. doi: 10.1038/s41467-024-47097-8.
Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.
核糖-5-磷酸(R5P)是核酸生物发生的前体;然而,R5P 在细胞内寄生虫弓形虫中的重要性和体内平衡仍然是个谜。在这里,我们表明细胞质 sedoheptulose-1,7-双磷酸酶(SBPase)是可有可无的。尽管如此,它与转醛醇酶(TAL)的共同缺失会损害双突变体的生长,并通过转酮醇酶(TKT)酶增加 C-葡萄糖衍生的通量进入戊糖。后者蛋白的缺失会影响寄生虫的适应性,但不会致死,并与通过氧化戊糖磷酸途径增加碳通量相关。此外,TKT 的缺失导致 C 掺入糖酵解和 TCA 循环减少,导致 ATP 水平下降,以及磷酸核糖焦磷酸合成酶(PRPS)无法将 R5P 转化为 5'-磷酸核糖焦磷酸,从而导致 AMP 和 IMP 的产生减少。同样,PRPS 对裂解周期是必不可少的。最重要的是,我们表明 RuPE 介导的代谢补偿对于 ΔsbpaseΔtal 菌株的存活是必要的。总之,我们证明了多种途径可以灵活地提供 R5P 以促进寄生虫的生长,并确定 TKT 和 PRPS 的催化作用是关键的酶促步骤。我们的工作为细胞内寄生在临床相关病原体中的网络设计原则提供了新的生物学和治疗学见解。