Suppr超能文献

一种位于寄生虫线粒体中的植物/真菌型磷酸烯醇式丙酮酸羧激酶可确保(寄生虫)在无葡萄糖情况下存活。

A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of .

作者信息

Nitzsche Richard, Günay-Esiyok Özlem, Tischer Maximilian, Zagoriy Vyacheslav, Gupta Nishith

机构信息

From the Department of Molecular Parasitology, Humboldt University, 10115 Berlin, Germany and.

metaSysX GmbH, 14476 Potsdam-Golm, Germany.

出版信息

J Biol Chem. 2017 Sep 15;292(37):15225-15239. doi: 10.1074/jbc.M117.802702. Epub 2017 Jul 18.

Abstract

is considered to be one of the most successful intracellular pathogens, because it can reproduce in varied nutritional milieus, encountered in diverse host cell types of essentially any warm-blooded organism. Our earlier work demonstrated that the acute (tachyzoite) stage of depends on cooperativity of glucose and glutamine catabolism to meet biosynthetic demands. Either of these two nutrients can sustain the parasite survival; however, what determines the metabolic plasticity has not yet been resolved. Here, we reveal two discrete phosphoenolpyruvate carboxykinase (PEPCK) enzymes in the parasite, one of which resides in the iochondrion (PEPCK), whereas the other protein is ot xpressed in achyzoites (PEPCK). Parasites with an intact glycolysis can tolerate genetic deletions of PEPCK as well as of PEPCK, indicating their nonessential roles for tachyzoite survival. PEPCK can also be ablated in a glycolysis-deficient mutant, while PEPCK is refractory to deletion. Consistent with this, the lytic cycle of a conditional mutant of PEPCK in the glycolysis-impaired strain was aborted upon induced repression of the mitochondrial isoform, demonstrating its essential role for the glucose-independent survival of parasites. Isotope-resolved metabolomics of the conditional mutant revealed defective flux of glutamine-derived carbon into RNA-bound ribose sugar as well as metabolites associated with gluconeogenesis, entailing a critical nodal role of PEPCK in linking catabolism of glucose and glutamine with anabolic pathways. Our data also suggest a homeostatic function ofPEPCK in cohesive operation of glycolysis and the tricarboxylic acid cycle in a normal glucose-replete milieu. Conversely, we found that the otherwise integrative enzyme pyruvate carboxylase (PyC) is dispensable not only in glycolysis-competent but also in glycolysis-deficient tachyzoites despite a mitochondrial localization. Last but not least, the observed physiology of tachyzoites appears to phenocopy cancer cells, which holds promise for developing common therapeutics against both threats.

摘要

被认为是最成功的细胞内病原体之一,因为它可以在各种营养环境中繁殖,这些环境存在于基本上任何温血动物的不同宿主细胞类型中。我们早期的研究表明,其急性(速殖子)阶段依赖于葡萄糖和谷氨酰胺分解代谢的协同作用来满足生物合成需求。这两种营养物质中的任何一种都可以维持寄生虫的存活;然而,决定代谢可塑性的因素尚未得到解决。在这里,我们揭示了寄生虫中有两种不同的磷酸烯醇式丙酮酸羧激酶(PEPCK)酶,其中一种存在于线粒体中(PEPCK),而另一种蛋白质在速殖子中不表达(PEPCK)。具有完整糖酵解的寄生虫可以耐受PEPCK以及PEPCK的基因缺失,表明它们对速殖子存活并非必需。PEPCK也可以在糖酵解缺陷型突变体中被敲除,而PEPCK则难以被删除。与此一致的是,在糖酵解受损菌株中,PEPCK条件突变体的裂解周期在诱导抑制线粒体异构体后中止,表明其对寄生虫不依赖葡萄糖存活的重要作用。条件突变体的同位素分辨代谢组学显示,谷氨酰胺衍生的碳进入与RNA结合的核糖糖以及与糖异生相关的代谢物的通量存在缺陷,这意味着PEPCK在将葡萄糖和谷氨酰胺的分解代谢与合成代谢途径联系起来方面起着关键的节点作用。我们的数据还表明,在正常富含葡萄糖的环境中,PEPCK在糖酵解和三羧酸循环的协同运作中具有稳态功能。相反,我们发现,尽管丙酮酸羧化酶(PyC)定位于线粒体,但它不仅在具有糖酵解能力的速殖子中,而且在糖酵解缺陷的速殖子中都是可有可无的。最后但同样重要的是,观察到的速殖子生理学似乎与癌细胞相似,这为开发针对这两种威胁的通用疗法带来了希望。

相似文献

引用本文的文献

5
A pyruvate transporter in the apicoplast of apicomplexan parasites.顶复门寄生虫类质体中的丙酮酸转运蛋白。
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2314314121. doi: 10.1073/pnas.2314314121. Epub 2024 Jun 12.
6
A novel enemy of cancer: recent investigations into protozoan anti-tumor properties.癌症的新型克星:原生动物抗肿瘤特性的最新研究
Front Cell Infect Microbiol. 2024 Jan 11;13:1325144. doi: 10.3389/fcimb.2023.1325144. eCollection 2023.

本文引用的文献

4
Lytic Cycle of Toxoplasma gondii: 15 Years Later.弓形虫的裂解周期:15年后
Annu Rev Microbiol. 2015;69:463-85. doi: 10.1146/annurev-micro-091014-104100. Epub 2015 Aug 28.
7
Regulation of substrate utilization by the mitochondrial pyruvate carrier.线粒体丙酮酸载体对底物利用的调节
Mol Cell. 2014 Nov 6;56(3):425-435. doi: 10.1016/j.molcel.2014.09.024. Epub 2014 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验