Suppr超能文献

人工智能在药物化学合成中的当前和未来作用。

Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis.

机构信息

Department of Chemical Engineering, MIT, Cambridge, Massachusetts 02139, United States.

Computational and Structural Chemistry, Merck & Co. Inc., Kenilworth, New Jersey 07033, United States.

出版信息

J Med Chem. 2020 Aug 27;63(16):8667-8682. doi: 10.1021/acs.jmedchem.9b02120. Epub 2020 Apr 14.

Abstract

Artificial intelligence and machine learning have demonstrated their potential role in predictive chemistry and synthetic planning of small molecules; there are at least a few reports of companies employing synthetic planning into their overall approach to accessing target molecules. A data-driven synthesis planning program is one component being developed and evaluated by the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, comprising MIT and 13 chemical and pharmaceutical company members. Together, we wrote this perspective to share how we think predictive models can be integrated into medicinal chemistry synthesis workflows, how they are currently used within MLPDS member companies, and the outlook for this field.

摘要

人工智能和机器学习已经证明了它们在预测化学和小分子的合成规划方面的潜在作用;至少有一些报道称,一些公司将合成规划纳入到他们获取目标分子的整体方法中。一个数据驱动的合成规划程序是由药物发现和合成机器学习(MLPDS)联盟开发和评估的一个组成部分,该联盟由麻省理工学院和 13 家化学和制药公司成员组成。我们共同撰写了这篇观点文章,以分享我们对预测模型如何整合到药物化学合成工作流程中的看法,以及它们在 MLPDS 成员公司中的当前使用情况和该领域的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b320/7457232/c44b2ce07f91/jm9b02120_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验