Yarali Ebrahim, Mubeen Ayman Ahmed, Cussen Kai, van Zanten Lennart, Moosabeiki Vahid, Zadpoor Amir A, Accardo Angelo, Mirzaali Mohammad J
Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands.
Sci Rep. 2025 Jul 1;15(1):21549. doi: 10.1038/s41598-025-06269-2.
Incorporating shape-morphing capability into 3D microprinting enables the fabrication of 4D-printed microarchitectures as proof-of-concept actuators for potential use in soft robotics and microfluidic systems. The ability of these 3D microstructures to actuate rapidly and reversibly enables precise, non-invasive, and controllable deformation. In this study, we investigated the programmable shape-morphing behavior of 3D microarchitectures fabricated using two-photon polymerization (2PP) of a well-established temperature-responsive hydrogel, poly(N-isopropylacrylamide) (pNIPAM). We first systematically studied how 2PP 3D printing parameters (e.g., laser power, scanning speed) and the chemical composition of pNIPAM, including monomer and crosslinker, influence the shape morphing of bilayer microstructures within a temperature range of ~ 32 °C to 60 °C. The (thermo)mechanical properties of the hydrogels, including the Young's modulus, thermal expansion coefficients, and angular deflection, were also measured at different laser doses and temperatures. Based on these experimental measurements, we calibrated a thermomechanical model capable of predicting the shape morphing of 4D-printed microarchitectures. These microarchitectures served as proof-of-concept actuators, demonstrating the potential of programmable microscale soft robotics and microfluidic systems. The findings provide design guidelines for engineering stimuli-responsive 3D microstructures, highlighting limitations and opportunities for future integration into functional soft robotic or microfluidic systems made of a single material.
将形状变形能力融入3D微打印技术,能够制造出4D打印的微结构,作为概念验证的致动器,有望应用于软机器人技术和微流体系统。这些3D微结构能够快速、可逆地致动,实现精确、非侵入性和可控的变形。在本研究中,我们研究了使用成熟的温度响应水凝胶聚(N-异丙基丙烯酰胺)(pNIPAM)的双光子聚合(2PP)制造的3D微结构的可编程形状变形行为。我们首先系统地研究了2PP 3D打印参数(如激光功率、扫描速度)以及pNIPAM的化学成分(包括单体和交联剂)如何在约32°C至60°C的温度范围内影响双层微结构的形状变形。还在不同的激光剂量和温度下测量了水凝胶的(热)机械性能,包括杨氏模量、热膨胀系数和角偏转。基于这些实验测量结果,我们校准了一个能够预测4D打印微结构形状变形的热机械模型。这些微结构作为概念验证的致动器,展示了可编程微尺度软机器人技术和微流体系统的潜力。这些发现为工程刺激响应性3D微结构提供了设计指导,突出了未来集成到由单一材料制成的功能性软机器人或微流体系统中的局限性和机遇。