Suppr超能文献

基于集成学习模型的多导联心电图心律失常检测的改进方法。

An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG).

机构信息

Human Centric (HUMIC) Engineering, Telkom University, Bandung, Indonesia.

School of Computing, Telkom University, Bandung, Indonesia.

出版信息

PLoS One. 2024 Apr 9;19(4):e0297551. doi: 10.1371/journal.pone.0297551. eCollection 2024.

Abstract

Arrhythmia is a life-threatening cardiac condition characterized by irregular heart rhythm. Early and accurate detection is crucial for effective treatment. However, single-lead electrocardiogram (ECG) methods have limited sensitivity and specificity. This study propose an improved ensemble learning approach for arrhythmia detection using multi-lead ECG data. Proposed method, based on a boosting algorithm, namely Fine Tuned Boosting (FTBO) model detects multiple arrhythmia classes. For the feature extraction, introduce a new technique that utilizes a sliding window with a window size of 5 R-peaks. This study compared it with other models, including bagging and stacking, and assessed the impact of parameter tuning. Rigorous experiments on the MIT-BIH arrhythmia database focused on Premature Ventricular Contraction (PVC), Atrial Premature Contraction (PAC), and Atrial Fibrillation (AF) have been performed. The results showed that the proposed method achieved high sensitivity, specificity, and accuracy for all three classes of arrhythmia. It accurately detected Atrial Fibrillation (AF) with 100% sensitivity and specificity. For Premature Ventricular Contraction (PVC) detection, it achieved 99% sensitivity and specificity in both leads. Similarly, for Atrial Premature Contraction (PAC) detection, proposed method achieved almost 96% sensitivity and specificity in both leads. The proposed method shows great potential for early arrhythmia detection using multi-lead ECG data.

摘要

心律失常是一种危及生命的心脏疾病,其特征是心律不规则。早期和准确的检测对于有效治疗至关重要。然而,单导联心电图(ECG)方法的灵敏度和特异性有限。本研究提出了一种使用多导联 ECG 数据进行心律失常检测的改进集成学习方法。所提出的方法基于一种提升算法,即 Fine Tuned Boosting(FTBO)模型,用于检测多种心律失常类别。为了进行特征提取,引入了一种新的技术,该技术利用窗口大小为 5 个 R 波峰值的滑动窗口。本研究将其与其他模型(包括装袋和堆叠)进行了比较,并评估了参数调整的影响。在 MIT-BIH 心律失常数据库上进行了严格的实验,重点关注早搏(PVC)、房性早搏(PAC)和心房颤动(AF)。结果表明,所提出的方法在所有三种心律失常类别中均具有高灵敏度、特异性和准确性。它可以准确地以 100%的灵敏度和特异性检测到心房颤动(AF)。对于早搏(PVC)检测,在两个导联上均达到了 99%的灵敏度和特异性。同样,对于房性早搏(PAC)检测,所提出的方法在两个导联上均达到了近 96%的灵敏度和特异性。该方法在使用多导联 ECG 数据进行早期心律失常检测方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e7/11003640/fceb13798aad/pone.0297551.g001.jpg

相似文献

1
An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG).
PLoS One. 2024 Apr 9;19(4):e0297551. doi: 10.1371/journal.pone.0297551. eCollection 2024.
2
Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions.
IEEE Trans Biomed Eng. 2021 Feb;68(2):448-460. doi: 10.1109/TBME.2020.3004310. Epub 2021 Jan 20.
3
Preliminary Results on Density Poincare Plot Based Atrial Fibrillation Detection from Premature Atrial/Ventricular Contractions.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2594-2597. doi: 10.1109/EMBC44109.2020.9175216.
4
A novel atrial fibrillation automatic detection algorithm based on ensemble learning and multi-feature discrimination.
Med Biol Eng Comput. 2024 Jun;62(6):1809-1820. doi: 10.1007/s11517-024-03046-7. Epub 2024 Feb 23.
8
Digital Image Processing Features of Smartwatch Photoplethysmography for Cardiac Arrhythmia Detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4071-4074. doi: 10.1109/EMBC44109.2020.9176142.
9
PULSE-SMART: Pulse-Based Arrhythmia Discrimination Using a Novel Smartphone Application.
J Cardiovasc Electrophysiol. 2016 Jan;27(1):51-7. doi: 10.1111/jce.12842. Epub 2015 Nov 13.

本文引用的文献

1
Arrhythmia classification detection based on multiple electrocardiograms databases.
PLoS One. 2023 Sep 27;18(9):e0290995. doi: 10.1371/journal.pone.0290995. eCollection 2023.
2
Atrial fibrillation detection with signal decomposition and dilated residual neural network.
Physiol Meas. 2023 Oct 5;44(10). doi: 10.1088/1361-6579/acfa61.
3
Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation.
BMC Bioinformatics. 2021 Nov 8;22(Suppl 5):93. doi: 10.1186/s12859-021-04000-2.
5
ECG-based prediction algorithm for imminent malignant ventricular arrhythmias using decision tree.
PLoS One. 2020 May 14;15(5):e0231635. doi: 10.1371/journal.pone.0231635. eCollection 2020.
6
Optimal Multi-Stage Arrhythmia Classification Approach.
Sci Rep. 2020 Feb 19;10(1):2898. doi: 10.1038/s41598-020-59821-7.
7
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation. 2019 Mar 5;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
8
ECG arrhythmia classification using time frequency distribution techniques.
Biomed Eng Lett. 2017 Jul 27;7(4):325-332. doi: 10.1007/s13534-017-0043-2. eCollection 2017 Nov.
9
AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning.
Physiol Meas. 2018 Dec 24;39(12):124007. doi: 10.1088/1361-6579/aaf35b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验