Suppr超能文献

推进心脏诊断:使用EGOLF-net模型进行高精度心律失常分类。

Advancing cardiac diagnostics: high-accuracy arrhythmia classification with the EGOLF-net model.

作者信息

Tenepalli Deepika, Navamani T M

机构信息

School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.

出版信息

Front Physiol. 2025 Jun 27;16:1613812. doi: 10.3389/fphys.2025.1613812. eCollection 2025.

Abstract

INTRODUCTION

Arrhythmia, characterized by irregular heartbeats, can range from harmless to potentially life-threatening disturbances in heart rhythm. Effective detection and classification of arrhythmias are crucial for timely medical intervention and management.

METHODS

This research utilizes the MIT-BIH Arrhythmia Database, a well acknowledged benchmark dataset, to train and validate the proposed EGOLFNet model, Enhanced Gray Wolf Optimization with LSTM Fusion Network. This model integrates advanced optimization techniques with deep learning to enhance diagnostic accuracy and robustness in arrhythmia detection. The methodology includes preprocessing the ECG signals to normalize and filter out noise, followed by feature extraction using statistical methods and wavelet transforms. The distinctive aspect of EGOLF-Net involves using Enhanced Gray Wolf Optimization to select optimal features, which are then processed by LSTM layers to capture temporal dependencies in the ECG data effectively.

RESULTS AND DISCUSSION

The model achieved an accuracy of 99.61%, demonstrating the potential of EGOLF-Net as a highly reliable tool for classifying arrhythmias, significantly advancing the capabilities of cardiology diagnostic systems. Thus the proposed EGOLF-Net model was developed and validated for accurately identifying heart arrhythmias using electrocardiogram (ECG) data.

摘要

引言

心律失常的特征是心跳不规则,其范围从无害到可能危及生命的心律紊乱。心律失常的有效检测和分类对于及时的医疗干预和管理至关重要。

方法

本研究利用麻省理工学院-波士顿儿童医院心律失常数据库(MIT-BIH Arrhythmia Database),这是一个公认的基准数据集,来训练和验证所提出的EGOLFNet模型,即带有长短期记忆融合网络的增强型灰狼优化算法(Enhanced Gray Wolf Optimization with LSTM Fusion Network)。该模型将先进的优化技术与深度学习相结合,以提高心律失常检测中的诊断准确性和鲁棒性。该方法包括对心电图信号进行预处理,以归一化并滤除噪声,然后使用统计方法和小波变换进行特征提取。EGOLF-Net的独特之处在于使用增强型灰狼优化算法来选择最优特征,然后由长短期记忆层对这些特征进行处理,以有效捕捉心电图数据中的时间依赖性。

结果与讨论

该模型的准确率达到了99.61%,证明了EGOLF-Net作为一种高度可靠的心律失常分类工具的潜力,显著提升了心脏病诊断系统的能力。因此,所提出的EGOLF-Net模型通过使用心电图(ECG)数据来准确识别心律失常而得以开发和验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验