Suppr超能文献

算法历程图:在医疗保健领域实施人工智能解决方案的切实方法。

The algorithm journey map: a tangible approach to implementing AI solutions in healthcare.

作者信息

Boag William, Hasan Alifia, Kim Jee Young, Revoir Mike, Nichols Marshall, Ratliff William, Gao Michael, Zilberstein Shira, Samad Zainab, Hoodbhoy Zahra, Ali Mushyada, Khan Nida Saddaf, Patel Manesh, Balu Suresh, Sendak Mark

机构信息

Duke Institute for Health Innovation, Durham, NC, USA.

Harvard University, Cambridge, MA, USA.

出版信息

NPJ Digit Med. 2024 Apr 9;7(1):87. doi: 10.1038/s41746-024-01061-4.

Abstract

When integrating AI tools in healthcare settings, complex interactions between technologies and primary users are not always fully understood or visible. This deficient and ambiguous understanding hampers attempts by healthcare organizations to adopt AI/ML, and it also creates new challenges for researchers to identify opportunities for simplifying adoption and developing best practices for the use of AI-based solutions. Our study fills this gap by documenting the process of designing, building, and maintaining an AI solution called SepsisWatch at Duke University Health System. We conducted 20 interviews with the team of engineers and scientists that led the multi-year effort to build the tool, integrate it into practice, and maintain the solution. This "Algorithm Journey Map" enumerates all social and technical activities throughout the AI solution's procurement, development, integration, and full lifecycle management. In addition to mapping the "who?" and "what?" of the adoption of the AI tool, we also show several 'lessons learned' throughout the algorithm journey maps including modeling assumptions, stakeholder inclusion, and organizational structure. In doing so, we identify generalizable insights about how to recognize and navigate barriers to AI/ML adoption in healthcare settings. We expect that this effort will further the development of best practices for operationalizing and sustaining ethical principles-in algorithmic systems.

摘要

在医疗环境中整合人工智能工具时,技术与主要用户之间复杂的交互并不总是能被完全理解或清晰呈现。这种理解上的不足和模糊阻碍了医疗机构采用人工智能/机器学习的尝试,也给研究人员带来了新的挑战,即识别简化采用流程的机会并为基于人工智能的解决方案制定最佳使用实践。我们的研究通过记录在杜克大学健康系统设计、构建和维护一个名为SepsisWatch的人工智能解决方案的过程,填补了这一空白。我们对一个工程师和科学家团队进行了20次访谈,该团队领导了为期多年的努力,包括构建该工具、将其整合到实践中以及维护该解决方案。这张“算法旅程图”列举了人工智能解决方案采购、开发、整合及全生命周期管理过程中的所有社会和技术活动。除了描绘人工智能工具采用过程中的“谁?”和“做什么?”,我们还在算法旅程图中展示了一些“经验教训”,包括建模假设、利益相关者纳入和组织结构。通过这样做,我们确定了关于如何识别和克服医疗环境中采用人工智能/机器学习的障碍的可推广见解。我们期望这一努力将推动在算法系统中实施和维持道德原则的最佳实践的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c25c/11003994/ffcffae40317/41746_2024_1061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验