Suppr超能文献

将脓毒症深度学习技术实际整合到常规临床护理中的实施研究

Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study.

作者信息

Sendak Mark P, Ratliff William, Sarro Dina, Alderton Elizabeth, Futoma Joseph, Gao Michael, Nichols Marshall, Revoir Mike, Yashar Faraz, Miller Corinne, Kester Kelly, Sandhu Sahil, Corey Kristin, Brajer Nathan, Tan Christelle, Lin Anthony, Brown Tres, Engelbosch Susan, Anstrom Kevin, Elish Madeleine Clare, Heller Katherine, Donohoe Rebecca, Theiling Jason, Poon Eric, Balu Suresh, Bedoya Armando, O'Brien Cara

机构信息

Duke Institute for Health Innovation, Durham, NC, United States.

Duke University Hospital, Durham, NC, United States.

出版信息

JMIR Med Inform. 2020 Jul 15;8(7):e15182. doi: 10.2196/15182.

Abstract

BACKGROUND

Successful integrations of machine learning into routine clinical care are exceedingly rare, and barriers to its adoption are poorly characterized in the literature.

OBJECTIVE

This study aims to report a quality improvement effort to integrate a deep learning sepsis detection and management platform, Sepsis Watch, into routine clinical care.

METHODS

In 2016, a multidisciplinary team consisting of statisticians, data scientists, data engineers, and clinicians was assembled by the leadership of an academic health system to radically improve the detection and treatment of sepsis. This report of the quality improvement effort follows the learning health system framework to describe the problem assessment, design, development, implementation, and evaluation plan of Sepsis Watch.

RESULTS

Sepsis Watch was successfully integrated into routine clinical care and reshaped how local machine learning projects are executed. Frontline clinical staff were highly engaged in the design and development of the workflow, machine learning model, and application. Novel machine learning methods were developed to detect sepsis early, and implementation of the model required robust infrastructure. Significant investment was required to align stakeholders, develop trusting relationships, define roles and responsibilities, and to train frontline staff, leading to the establishment of 3 partnerships with internal and external research groups to evaluate Sepsis Watch.

CONCLUSIONS

Machine learning models are commonly developed to enhance clinical decision making, but successful integrations of machine learning into routine clinical care are rare. Although there is no playbook for integrating deep learning into clinical care, learnings from the Sepsis Watch integration can inform efforts to develop machine learning technologies at other health care delivery systems.

摘要

背景

机器学习成功融入常规临床护理的情况极为罕见,且其在文献中对采用障碍的描述也很有限。

目的

本研究旨在报告一项质量改进工作,即将深度学习脓毒症检测与管理平台Sepsis Watch融入常规临床护理。

方法

2016年,一个由统计学家、数据科学家、数据工程师和临床医生组成的多学科团队,在一个学术健康系统的领导下组建,以从根本上改善脓毒症的检测和治疗。本质量改进工作的报告遵循学习型健康系统框架,描述Sepsis Watch的问题评估、设计、开发、实施和评估计划。

结果

Sepsis Watch成功融入常规临床护理,并重塑了本地机器学习项目的执行方式。一线临床工作人员高度参与了工作流程、机器学习模型和应用程序的设计与开发。开发了新的机器学习方法以早期检测脓毒症,模型的实施需要强大的基础设施。需要大量投资来协调利益相关者、建立信任关系、明确角色和职责以及培训一线工作人员,为此与内部和外部研究小组建立了3个合作伙伴关系以评估Sepsis Watch。

结论

机器学习模型通常是为增强临床决策而开发的,但机器学习成功融入常规临床护理的情况很少见。虽然没有将深度学习融入临床护理的手册,但从Sepsis Watch集成中获得的经验教训可为其他医疗保健系统开发机器学习技术的努力提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/642c/7391165/0ad3ae79afa3/medinform_v8i7e15182_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验