Lee Chiwon, Kassier Günther H, Miller R J Dwayne
Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
Struct Dyn. 2024 Apr 8;11(2):024309. doi: 10.1063/4.0000246. eCollection 2024 Mar.
For time-resolved diffraction studies of irreversible structural dynamics upon photoexcitation, there are constraints on the number of perturbation cycles due to thermal effects and accumulated strain, which impact the degree of crystal order and spatial resolution. This problem is exasperated for surface studies that are more prone to disordering and defect formation. Ultrafast electron diffraction studies of these systems, with the conventional stroboscopic pump-probe protocol, require repetitive measurements on well-prepared diffraction samples to acquire and average signals above background in the dynamic range of interest from few tens to hundreds of picoseconds. Here, we present ultrafast streaked low-energy electron diffraction (LEED) that demands, in principle, only a single excitation per nominal data acquisition timeframe. By exploiting the space-time correlation characteristics of the streaking method and high-charge 2 keV electron bunches in the transmission geometry, we demonstrate about one order of magnitude reduction in the accumulated number of the excitation cycles and total electron dose, and 48% decrease in the root mean square error of the model fit residual compared to the conventional time-scanning measurement. We believe that our results demonstrate a viable alternative method with higher sensitivity to that of nanotip-based ultrafast LEED studies relying on a few electrons per a single excitation, to access to all classes of structural dynamics to provide an atomic level view of surface processes.
对于光激发后不可逆结构动力学的时间分辨衍射研究,由于热效应和累积应变,微扰循环的次数存在限制,这会影响晶体有序度和空间分辨率。对于更易出现无序和缺陷形成的表面研究,这个问题会更加严重。使用传统的频闪泵浦 - 探测协议对这些系统进行超快电子衍射研究时,需要对精心制备的衍射样品进行重复测量,以便在几十到几百皮秒的感兴趣动态范围内获取并平均高于背景的信号。在此,我们展示了超快条纹低能电子衍射(LEED),原则上在每个标称数据采集时间框架内仅需一次激发。通过利用条纹方法的时空相关特性以及透射几何结构中的高电荷2 keV电子束,我们证明与传统时间扫描测量相比,激发循环的累积次数和总电子剂量减少了约一个数量级,并且模型拟合残差的均方根误差降低了48%。我们相信,我们的结果展示了一种可行的替代方法,与基于纳米尖端的超快LEED研究相比,该方法对每个单次激发仅依赖少数电子具有更高的灵敏度,能够获取所有类型的结构动力学,以提供表面过程的原子级视图。