Suppr超能文献

通过生物信息学和系统生物学方法发现结核病和新冠肺炎之间的共同致病过程。

Discovering common pathogenetic processes between tuberculosis and COVID-19 by bioinformatics and system biology approach.

作者信息

Liu Xin, Li Haoran, Wang Yilin, Li Shanshan, Ren Weicong, Yuan Jinfeng, Pang Yu

机构信息

Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

出版信息

Heliyon. 2024 Mar 27;10(7):e28664. doi: 10.1016/j.heliyon.2024.e28664. eCollection 2024 Apr 15.

Abstract

BACKGROUND

SARS-CoV-2, the cause of the COVID-19 pandemic, poses a significant threat to humanity. Individuals with pulmonary tuberculosis (PTB) are at increased risk of developing severe COVID-19, due to long-term lung damage that heightens their susceptibility to full-blown disease.

METHODS

Three COVID-19 datasets (GSE157103, GSE166253, and GSE171110) and one PTB dataset (GSE83456) were obtained from the Gene Expression Omnibus databases. Subsequently, data were subjected to weighted gene co-expression network analysis(WGCNA)followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. These analyses revealed two overlapping disease-specific modules, each comprising co-regulated genes with potentially related biological functions. Using Cytoscape, we visualised the interaction network containing common disease-related genes found within the intersection between modules and predicted transcription factors (TFs). Real-time qPCR was conducted to quantify expression levels of these genes in blood samples from COVID-19 and PTB patients. Finally, DisGeNET and the Drug Signatures database were employed to analyze these common genes, unveiling their connections to clinical disease features and potential drug treatments.

RESULTS

Examination of the overlap between COVID-19 and PTB gene modules unveiled 11 common genes. Functional enrichment analyses using KEGG and GO shed light on potential functional relationships among these genes, providing insights into their potential roles in the heightened mortality of PTB patients due to SARS-CoV-2 infection. Furthermore, results of various bioinformatics-based analyses of common TFs and target genes led to identification of shared pathways and therapeutic targets for PTB patients with COVID-19, along with potential drug treatments for these patients.

CONCLUSION

Our results unveiled a potential biological connection between COVID-19 and PTB, as supported by results of functional enrichment analysis that highlighted potential biological processes and signaling pathways shared by both diseases. Building on these findings, we propose potential drug treatments for PTB patients with COVID-19, pending verification of drug safety and efficacy through laboratory and multicentre studies before clinical use.

摘要

背景

导致新冠疫情的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)对人类构成了重大威胁。肺结核(PTB)患者因长期肺部损伤使其更易发展为重症新冠,从而面临更高的感染风险。

方法

从基因表达综合数据库中获取了三个新冠数据集(GSE157103、GSE166253和GSE171110)以及一个肺结核数据集(GSE83456)。随后,对数据进行加权基因共表达网络分析(WGCNA),接着使用基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路数据库进行功能富集分析。这些分析揭示了两个重叠的疾病特异性模块,每个模块都包含具有潜在相关生物学功能的共同调控基因。我们使用Cytoscape可视化了包含模块交叉点中发现的常见疾病相关基因和预测转录因子(TFs)的相互作用网络。进行实时定量PCR以量化新冠和肺结核患者血液样本中这些基因的表达水平。最后,利用疾病基因网络(DisGeNET)和药物特征数据库分析这些常见基因,揭示它们与临床疾病特征和潜在药物治疗的联系。

结果

对新冠和肺结核基因模块之间的重叠进行检查,发现了11个共同基因。使用KEGG和GO进行的功能富集分析揭示了这些基因之间潜在的功能关系,为它们在SARS-CoV-2感染导致肺结核患者死亡率升高方面的潜在作用提供了见解。此外,对常见转录因子和靶基因进行的各种基于生物信息学分析的结果,确定了新冠肺结核患者的共同通路和治疗靶点,以及这些患者的潜在药物治疗方法。

结论

我们的结果揭示了新冠和肺结核之间潜在的生物学联系,功能富集分析结果支持了这一点,该分析突出了两种疾病共有的潜在生物学过程和信号通路。基于这些发现,我们提出了针对新冠肺结核患者的潜在药物治疗方法,但在临床使用前,需通过实验室和多中心研究验证药物的安全性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949f/11002586/1728d735a1d1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验