Suppr超能文献

人工智能在甲癣诊断中的应用——文献综述

Artificial Intelligence in the Diagnosis of Onychomycosis-Literature Review.

作者信息

Bulińska Barbara, Mazur-Milecka Magdalena, Sławińska Martyna, Rumiński Jacek, Nowicki Roman J

机构信息

Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland.

Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Computer Science, Gdańsk University of Technology, 80-233 Gdańsk, Poland.

出版信息

J Fungi (Basel). 2024 Jul 30;10(8):534. doi: 10.3390/jof10080534.

Abstract

Onychomycosis is a common fungal nail infection that is difficult to diagnose due to its similarity to other nail conditions. Accurate identification is essential for effective treatment. The current gold standard methods include microscopic examination with potassium hydroxide, fungal cultures, and Periodic acid-Schiff biopsy staining. These conventional techniques, however, suffer from high turnover times, variable sensitivity, reliance on human interpretation, and costs. This study examines the potential of integrating AI (artificial intelligence) with visualization tools like dermoscopy and microscopy to improve the accuracy and efficiency of onychomycosis diagnosis. AI algorithms can further improve the interpretation of these images. The review includes 14 studies from PubMed and IEEE databases published between 2010 and 2024, involving clinical and dermoscopic pictures, histopathology slides, and KOH microscopic images. Data extracted include study type, sample size, image assessment model, AI algorithms, test performance, and comparison with clinical diagnostics. Most studies show that AI models achieve an accuracy comparable to or better than clinicians, suggesting a promising role for AI in diagnosing onychomycosis. Nevertheless, the niche nature of the topic indicates a need for further research.

摘要

甲癣是一种常见的指甲真菌感染,由于其与其他指甲病症相似,因此难以诊断。准确识别对于有效治疗至关重要。当前的金标准方法包括氢氧化钾显微镜检查、真菌培养和过碘酸希夫活检染色。然而,这些传统技术存在周转时间长、灵敏度可变、依赖人工解读以及成本高等问题。本研究探讨了将人工智能(AI)与皮肤镜和显微镜等可视化工具相结合,以提高甲癣诊断准确性和效率的潜力。人工智能算法可以进一步改进对这些图像的解读。该综述涵盖了2010年至2024年间发表于PubMed和IEEE数据库的14项研究,涉及临床和皮肤镜图片、组织病理学切片以及氢氧化钾显微镜图像。提取的数据包括研究类型、样本量、图像评估模型、人工智能算法、测试性能以及与临床诊断的比较。大多数研究表明,人工智能模型的准确性与临床医生相当或更高,这表明人工智能在甲癣诊断中具有广阔前景。尽管如此,该主题的特殊性表明仍需进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4fe/11355597/3cd047d8b136/jof-10-00534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验