Jamil Mudasir, Aziz Muhammad Zulkifal, Yu Xiaojun
School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China.
Biomed Phys Eng Express. 2024 May 30;10(4). doi: 10.1088/2057-1976/ad3cde.
Prompt diagnosis of epilepsy relies on accurate classification of automated electroencephalogram (EEG) signals. Several approaches have been developed to characterize epileptic EEG data; however, none of them have exploited time-frequency data to evaluate the effect of tweaking parameters in pretrained frameworks for EEG data classification. This study compares the performance of several pretrained convolutional neural networks (CNNs) namely, AlexNet, GoogLeNet, MobileNetV2, ResNet-18 and SqueezeNet for the localization of epilepsy EEG data using various time-frequency data representation algorithms. Continuous wavelet transform (CWT), empirical Fourier decomposition (EFD), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD) were exploited for the acquisition of 2D scalograms from 1D data. The research evaluates the effect of multiple factors, including noisy versus denoised scalograms, different optimizers, learning rates, single versus dual channels, model size, and computational time consumption. The benchmark Bern-Barcelona EEG dataset is used for testing purpose. Results obtained show that the combination of MobileNetV2, Continuous Wavelet Transform (CWT) and Adam optimizer at a learning rate of 10, coupled with dual-data channels, provides the best performance metrics. Specifically, these parameters result in optimal sensitivity, specificity, f1-score, and classification accuracy, with respective values of 96.06%, 96.15%, 96.08%, and 96.10%. To further corroborate the efficacy of opted pretrained models on exploited Signal Decomposition (SD) algorithms, the classifiers are also being simulated on Temple University database at pinnacle modeling composition. A similar pattern in the outcome readily validate the findings of our study and robustness of deep learning models on epilepsy EEG scalograms.The conclusions drawn emphasize the potential of pretrained CNN-based models to create a robust, automated system for diagnosing epileptiform. Furthermore, the study offers insights into the effectiveness of varying time-frequency techniques and classifier parameters for classifying epileptic EEG data.
癫痫的快速诊断依赖于对自动脑电图(EEG)信号的准确分类。已经开发了几种方法来表征癫痫性脑电数据;然而,它们都没有利用时频数据来评估在预训练框架中调整参数对脑电数据分类的影响。本研究比较了几种预训练卷积神经网络(CNN),即AlexNet、GoogLeNet、MobileNetV2、ResNet-18和SqueezeNet,使用各种时频数据表示算法对癫痫脑电数据进行定位的性能。利用连续小波变换(CWT)、经验傅里叶分解(EFD)、经验模态分解(EMD)、经验小波变换(EWT)和变分模态分解(VMD)从一维数据中获取二维小波图。该研究评估了多个因素的影响,包括有噪声与去噪后的小波图、不同的优化器、学习率、单通道与双通道、模型大小和计算时间消耗。基准的伯尔尼-巴塞罗那脑电数据集用于测试目的。获得的结果表明,MobileNetV2、连续小波变换(CWT)和学习率为10的Adam优化器相结合,再加上双数据通道,提供了最佳性能指标。具体而言,这些参数导致了最佳的灵敏度、特异性、f1分数和分类准确率,其值分别为96.06%、96.15%、96.08%和96.10%。为了进一步证实所选预训练模型对所采用的信号分解(SD)算法的有效性,还在顶峰建模组合的天普大学数据库上对分类器进行了模拟。结果中的相似模式很容易验证我们研究的结果以及深度学习模型在癫痫脑电小波图上的稳健性。得出的结论强调了基于预训练CNN的模型创建一个强大的、自动的癫痫样放电诊断系统的潜力。此外,该研究还深入探讨了不同时频技术和分类器参数对癫痫脑电数据分类的有效性。