Suppr超能文献

基于 EMD/VMD 分解方法的癫痫脑电信号检测中的非线性和混沌特征。

Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection.

机构信息

LRES Lab, Université 20 Août, Skikda, Algeria.

Lab. Electrotech, Université 20 Août, Skikda, Algeria.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Nov;27(15):2091-2110. doi: 10.1080/10255842.2023.2271603. Epub 2023 Oct 20.

Abstract

The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.

摘要

癫痫发作的检测和识别引起了神经生理学家的极大关注。为了检测癫痫发作或等效的癫痫 EEG 状态,本文提出使用非线性和混沌特征,而不是通常经验中计算原始 EEG 信号的特征,而是使用固有模态函数(IMF)。这些 IMF 是通过新的时频信号分解方法从经验模态分解(EMD)和变分模态分解(VMD)方法的基础上提取的。所提出方法的第一步是通过 EMD 和 VMD 分解方法在时间 EEG 段上提取 IMF 的各个分量。Hjorth 参数、Hurst 指数、递归量化分析(RQA)、去趋势波动分析(DFA)、最大 Lyapunov 指数(LLE)、Higuchi 和 Katz 分形维数(HFD 和 KFD),在 IMF 上计算了七种非线性和混沌特征,并使用 K-最近邻(KNN)和多层感知机神经网络(MLPNN)分类器评估了它们的分类性能。此外,还研究了最佳非线性特征的组合,以评估其在灵敏度、特异性和整体分类准确性方面的性能。使用公开的波恩 EEG 数据集验证了该方法在从正常或癫痫间 EEG 段中检测癫痫 EEG 信号的效率。在当前研究中涉及的多项实验中,最终结果表明,对于所研究的六种不同癫痫发作检测案例问题,整体分类准确率可以达到 100%、99.45%、99.8%、99.8%、98.6%和 99.1%,这证实了该方法在帮助癫痫检测护理单元的临床医生对癫痫发作事件进行分类时的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验