Suppr超能文献

从对患者的影响角度理解人工智能算法在组织病理学中所犯的错误。

Understanding the errors made by artificial intelligence algorithms in histopathology in terms of patient impact.

作者信息

Evans Harriet, Snead David

机构信息

Histopathology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.

Warwick Medical School, University of Warwick, Coventry, UK.

出版信息

NPJ Digit Med. 2024 Apr 10;7(1):89. doi: 10.1038/s41746-024-01093-w.

Abstract

An increasing number of artificial intelligence (AI) tools are moving towards the clinical realm in histopathology and across medicine. The introduction of such tools will bring several benefits to diagnostic specialities, namely increased diagnostic accuracy and efficiency, however, as no AI tool is infallible, their use will inevitably introduce novel errors. These errors made by AI tools are, most fundamentally, misclassifications made by a computational algorithm. Understanding of how these translate into clinical impact on patients is often lacking, meaning true reporting of AI tool safety is incomplete. In this Perspective we consider AI diagnostic tools in histopathology, which are predominantly assessed in terms of technical performance metrics such as sensitivity, specificity and area under the receiver operating characteristic curve. Although these metrics are essential and allow tool comparison, they alone give an incomplete picture of how an AI tool's errors could impact a patient's diagnosis, management and prognosis. We instead suggest assessing and reporting AI tool errors from a pathological and clinical stance, demonstrating how this is done in studies on human pathologist errors, and giving examples where available from pathology and radiology. Although this seems a significant task, we discuss ways to move towards this approach in terms of study design, guidelines and regulation. This Perspective seeks to initiate broader consideration of the assessment of AI tool errors in histopathology and across diagnostic specialities, in an attempt to keep patient safety at the forefront of AI tool development and facilitate safe clinical deployment.

摘要

越来越多的人工智能(AI)工具正朝着组织病理学及整个医学领域的临床应用迈进。这类工具的引入将给诊断专业带来诸多益处,即提高诊断准确性和效率。然而,由于没有任何人工智能工具是完美无缺的,它们的使用不可避免地会引入新的错误。人工智能工具所产生的这些错误,从根本上来说,是计算算法导致的错误分类。人们往往缺乏对这些错误如何转化为对患者临床影响的理解,这意味着对人工智能工具安全性的真实报告并不完整。在这篇观点文章中,我们探讨了组织病理学中的人工智能诊断工具,这些工具主要依据诸如灵敏度、特异性和受试者工作特征曲线下面积等技术性能指标进行评估。尽管这些指标至关重要且有助于工具比较,但仅凭它们并不能全面反映人工智能工具的错误如何影响患者的诊断、治疗和预后。相反,我们建议从病理学和临床角度评估并报告人工智能工具的错误,展示在关于人类病理学家错误的研究中是如何做到这一点的,并在病理学和放射学领域提供相关实例。尽管这似乎是一项艰巨的任务,但我们从研究设计、指南和监管等方面讨论了朝着这种方法迈进的途径。这篇观点文章旨在引发对组织病理学及整个诊断专业中人工智能工具错误评估的更广泛思考,试图将患者安全置于人工智能工具开发的首要位置,并促进其安全的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c58/11006652/04f582fda49e/41746_2024_1093_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验