Suppr超能文献

制定以人工智能为中心的诊断性试验准确性研究报告规范:STARD-AI 协议。

Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol.

机构信息

Department of Surgery and Cancer, Imperial College London, Paddington, UK.

Institute of Global Health Innovation, Imperial College London, London, UK.

出版信息

BMJ Open. 2021 Jun 28;11(6):e047709. doi: 10.1136/bmjopen-2020-047709.

Abstract

INTRODUCTION

Standards for Reporting of Diagnostic Accuracy Study (STARD) was developed to improve the completeness and transparency of reporting in studies investigating diagnostic test accuracy. However, its current form, STARD 2015 does not address the issues and challenges raised by artificial intelligence (AI)-centred interventions. As such, we propose an AI-specific version of the STARD checklist (STARD-AI), which focuses on the reporting of AI diagnostic test accuracy studies. This paper describes the methods that will be used to develop STARD-AI.

METHODS AND ANALYSIS

The development of the STARD-AI checklist can be distilled into six stages. (1) A project organisation phase has been undertaken, during which a Project Team and a Steering Committee were established; (2) An item generation process has been completed following a literature review, a patient and public involvement and engagement exercise and an online scoping survey of international experts; (3) A three-round modified Delphi consensus methodology is underway, which will culminate in a teleconference consensus meeting of experts; (4) Thereafter, the Project Team will draft the initial STARD-AI checklist and the accompanying documents; (5) A piloting phase among expert users will be undertaken to identify items which are either unclear or missing. This process, consisting of surveys and semistructured interviews, will contribute towards the explanation and elaboration document and (6) On finalisation of the manuscripts, the group's efforts turn towards an organised dissemination and implementation strategy to maximise end-user adoption.

ETHICS AND DISSEMINATION

Ethical approval has been granted by the Joint Research Compliance Office at Imperial College London (reference number: 19IC5679). A dissemination strategy will be aimed towards five groups of stakeholders: (1) academia, (2) policy, (3) guidelines and regulation, (4) industry and (5) public and non-specific stakeholders. We anticipate that dissemination will take place in Q3 of 2021.

摘要

简介

为了提高研究诊断测试准确性的研究报告的完整性和透明度,制定了诊断准确性研究报告标准(STARD)。然而,它的当前形式 STARD 2015 并没有解决人工智能(AI)为中心的干预措施所提出的问题和挑战。因此,我们提出了一个专门针对 AI 的 STARD 清单版本(STARD-AI),该清单侧重于报告 AI 诊断测试准确性研究。本文介绍了开发 STARD-AI 清单所使用的方法。

方法和分析

STARD-AI 清单的开发可以分为六个阶段。(1)已经进行了项目组织阶段,在此期间成立了项目团队和指导委员会;(2)在文献回顾、患者和公众参与以及国际专家在线范围调查之后,已经完成了项目生成过程;(3)正在进行三轮修改后的 Delphi 共识方法,最终将举行专家电话会议共识会议;(4)此后,项目团队将起草初始 STARD-AI 清单及其配套文件;(5)将在专家用户中进行试点阶段,以确定不清楚或缺失的项目。这一过程包括调查和半结构化访谈,将有助于解释和阐述文件;(6)在完成手稿后,该小组的工作将转向有组织的传播和实施策略,以最大限度地提高最终用户的采用率。

伦理和传播

伦敦帝国理工学院联合研究合规办公室已批准这项研究(参考编号:19IC5679)。将制定一项传播策略,针对五个利益相关者群体:(1)学术界,(2)政策,(3)指南和法规,(4)行业和(5)公众和非特定利益相关者。我们预计传播将在 2021 年第三季度进行。

相似文献

引用本文的文献

本文引用的文献

6
Reporting of artificial intelligence prediction models.人工智能预测模型的报告。
Lancet. 2019 Apr 20;393(10181):1577-1579. doi: 10.1016/S0140-6736(19)30037-6.
7
10
The COMET Handbook: version 1.0.《COMET手册:第1.0版》
Trials. 2017 Jun 20;18(Suppl 3):280. doi: 10.1186/s13063-017-1978-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验