Suppr超能文献

利用人工智能辅助自适应光学光学相干断层扫描技术揭示被散斑掩盖的活体人类视网膜细胞。

Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography.

作者信息

Das Vineeta, Zhang Furu, Bower Andrew J, Li Joanne, Liu Tao, Aguilera Nancy, Alvisio Bruno, Liu Zhuolin, Hammer Daniel X, Tam Johnny

机构信息

National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.

出版信息

Commun Med (Lond). 2024 Apr 10;4(1):68. doi: 10.1038/s43856-024-00483-1.

Abstract

BACKGROUND

In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput.

METHODS

Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study.

RESULTS

We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges.

CONCLUSIONS

The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.

摘要

背景

使用自适应光学光学相干断层扫描(AO-OCT)对人视网膜进行体内成像,通过实现细胞尺度分辨率下的三维视网膜结构可视化,包括对维持视觉功能至关重要的视网膜色素上皮(RPE)细胞,从而改变了医学成像。然而,由于成像过程中固有的噪声(如散斑)使得从单次体积采集可视化RPE细胞变得困难,通常需要对大量三维体积进行平均以提高对比度,这大大增加了采集持续时间并降低了整体成像通量。

方法

在此,我们引入了并行判别器生成对抗网络(P-GAN),这是一种人工智能(AI)方法,旨在从单个AO-OCT体积中恢复被散斑掩盖的细胞特征,从而无需采集大量体积进行平均。P-GAN中两个并行判别器的组合为生成器提供了额外的反馈,以更忠实地恢复局部和全局细胞结构。本研究使用了7名参与者8只眼睛的成像数据。

结果

我们表明,P-GAN不仅将RPE细胞对比度提高了3.5倍,还将可视化RPE细胞所需的端到端时间缩短了99倍,从而实现了对活人眼中细胞的大规模成像。从3名参与者的大量AI恢复图像中测量的RPE细胞间距与预期的正常范围一致。

结论

结果证明了AI辅助成像在克服RPE成像的关键限制并使其在常规临床环境中更易于实现方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb5/11006674/36a55d49419b/43856_2024_483_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验