Indiana University, School of Optometry, Bloomington, Indiana, United States.
Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indi, United States.
J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.016001.
Adaptive optics optical coherence tomography (AO-OCT) technology enables non-invasive, high-resolution three-dimensional (3D) imaging of the retina and promises earlier detection of ocular disease. However, AO-OCT data are corrupted by eye-movement artifacts that must be removed in post-processing, a process rendered time-consuming by the immense quantity of data.
To efficiently remove eye-movement artifacts at the level of individual A-lines, including those present in any individual reference volume.
We developed a registration method that cascades (1) a 3D B-scan registration algorithm with (2) a global A-line registration algorithm for correcting torsional eye movements and image scaling and generating global motion-free coordinates. The first algorithm corrects 3D translational eye movements to a single reference volume, accelerated using parallel computing. The second algorithm combines outputs of multiple runs of the first algorithm using different reference volumes followed by an affine transformation, permitting registration of all images to a global coordinate system at the level of individual A-lines.
The 3D B-scan algorithm estimates and corrects 3D translational motions with high registration accuracy and robustness, even for volumes containing microsaccades. Averaging registered volumes improves our image quality metrics up to 22 dB. Implementation in CUDA™ on a graphics processing unit registers a 512 × 512 × 512 volume in only 10.6 s, 150 times faster than MATLAB™ on a central processing unit. The global A-line algorithm minimizes image distortion, improves regularity of the cone photoreceptor mosaic, and supports enhanced visualization of low-contrast retinal cellular features. Averaging registered volumes improves our image quality up to 9.4 dB. It also permits extending the imaging field of view (∼2.1 × ) and depth of focus (∼5.6 × ) beyond what is attainable with single-reference registration.
We can efficiently correct eye motion in all 3D at the level of individual A-lines using a global coordinate system.
自适应光学光学相干断层扫描(AO-OCT)技术能够对视网膜进行非侵入性、高分辨率的三维(3D)成像,并有望更早地发现眼部疾病。然而,AO-OCT 数据会受到眼球运动伪影的干扰,这些伪影必须在后期处理中进行去除,而大量的数据使得这一过程变得耗时。
在单个 A 线层面上高效去除眼球运动伪影,包括那些存在于任何单个参考体积中的伪影。
我们开发了一种注册方法,该方法级联(1)一个 3D B 扫描注册算法和(2)一个全局 A 线注册算法,用于校正扭转眼球运动和图像缩放,并生成全局无运动坐标。第一个算法将 3D 平移眼球运动校正到单个参考体积,使用并行计算加速。第二个算法结合了使用不同参考体积的第一个算法的多次运行的输出,然后进行仿射变换,允许将所有图像注册到单个 A 线层面的全局坐标系。
3D B 扫描算法估计和校正 3D 平移运动具有高精度和鲁棒性,即使对于包含微扫视的体积也是如此。注册体积的平均化将我们的图像质量指标提高了高达 22dB。在图形处理单元上的 CUDA 实现仅需 10.6 秒即可注册 512×512×512 体积,比中央处理单元上的 MATLAB 快 150 倍。全局 A 线算法最小化图像失真,改善锥状光感受器镶嵌的规则性,并支持增强低对比度视网膜细胞特征的可视化。注册体积的平均化将我们的图像质量提高了高达 9.4dB。它还允许扩展成像视场(∼2.1×)和景深(∼5.6×),超出了单个参考注册所能达到的范围。
我们可以使用全局坐标系在单个 A 线层面上高效地校正所有 3D 的眼球运动。