Suppr超能文献

在具有部分标注和超人精度的自适应光学光学相干断层扫描图像中识别视网膜色素上皮细胞。

Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.

作者信息

Soltanian-Zadeh Somayyeh, Kovalick Katherine, Aghayee Samira, Miller Donald T, Liu Zhuolin, Hammer Daniel X, Farsiu Sina

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.

出版信息

Biomed Opt Express. 2024 Nov 21;15(12):6922-6939. doi: 10.1364/BOE.538473. eCollection 2024 Dec 1.

Abstract

Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.

摘要

视网膜色素上皮(RPE)细胞对于正常视网膜功能至关重要。这些细胞的形态学缺陷与多种视网膜神经退行性疾病相关。由于具有细胞分辨率和深度切片能力,利用自适应光学光学相干断层扫描(AO-OCT)可以在体内观察单个RPE细胞。要对RPE镶嵌结构的特性进行快速、经济高效且客观的量化,就需要开发一种自动细胞分割算法。本文提出了一种基于深度学习的方法,通过部分标注训练来检测AO-OCT图像中的RPE细胞,其准确率优于人工操作。我们已将代码、成像数据集和专家手动标注在线公开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a9/11640571/fec55e0bc17d/boe-15-12-6922-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验