Suppr超能文献

编织3-辫链环的亚历山大和琼斯多项式以及卢卡斯晶格的惠特尼秩多项式。

Alexander and Jones polynomials of weaving 3-braid links and Whitney rank polynomials of Lucas lattice.

作者信息

AlSukaiti Mark E, Chbili Nafaa

机构信息

Department of Mathematical Sciences, College of Science, United Arab Emirates University, 15551 Al Ain, United Arab Emirates.

出版信息

Heliyon. 2024 Apr 2;10(7):e28945. doi: 10.1016/j.heliyon.2024.e28945. eCollection 2024 Apr 15.

Abstract

In this paper, a connection is established between the Jones polynomial of generalized weaving knots of type and the Chebyshev polynomial of the first kind. Consequently, it is proved that the coefficients of the Jones polynomial of weaving knots are essentially the Whitney numbers of Lucas lattices. Additionally, an explicit formula for the coefficients of the Alexander polynomial of weaving knots is introduced, and it is proven that these coefficients satisfy Fox's trapezoidal conjecture.

摘要

在本文中,建立了 型广义编织纽结的琼斯多项式与第一类切比雪夫多项式之间的联系。因此,证明了编织纽结的琼斯多项式的系数本质上是卢卡斯格的惠特尼数。此外,还引入了编织纽结的亚历山大多项式系数的显式公式,并证明这些系数满足福克斯梯形猜想。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a306/11004560/3cb1f66d0428/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验