School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
Environ Sci Technol. 2024 May 7;58(18):7891-7903. doi: 10.1021/acs.est.3c02111. Epub 2024 Apr 11.
Tropospheric nitrogen dioxide (NO) poses a serious threat to the environmental quality and public health. Satellite NO observations have been continuously used to monitor NO variations and improve model performances. However, the accuracy of satellite NO retrieval depends on the knowledge of aerosol optical properties, in particular for urban agglomerations accompanied by significant changes in aerosol characteristics. In this study, we investigate the impacts of aerosol composition on tropospheric NO retrieval for an 18 year global data set from Global Ozone Monitoring Experiment (GOME)-series satellite sensors. With a focus on cloud-free scenes dominated by the presence of aerosols, individual aerosol composition affects the uncertainties of tropospheric NO columns through impacts on the aerosol loading amount, relative vertical distribution of aerosol and NO, aerosol absorption properties, and surface albedo determination. Among aerosol compositions, secondary inorganic aerosol mostly dominates the NO uncertainty by up to 43.5% in urban agglomerations, while organic aerosols contribute significantly to the NO uncertainty by -8.9 to 37.3% during biomass burning seasons. The possible contrary influences from different aerosol species highlight the importance and complexity of aerosol correction on tropospheric NO retrieval and indicate the need for a full picture of aerosol properties. This is of particular importance for interpreting seasonal variations or long-term trends of tropospheric NO columns as well as for mitigating ozone and fine particulate matter pollution.
对流层二氧化氮 (NO) 对环境质量和公众健康构成严重威胁。卫星 NO 观测一直被用于监测 NO 的变化并改进模型性能。然而,卫星 NO 反演的准确性取决于对气溶胶光学特性的了解,特别是对于伴随气溶胶特征显著变化的城市群。在这项研究中,我们调查了气溶胶组成对 GOME 系列卫星传感器 18 年全球数据集的对流层 NO 反演的影响。重点关注无云场景,这些场景主要存在气溶胶,单个气溶胶组成通过影响气溶胶负载量、气溶胶和 NO 的相对垂直分布、气溶胶吸收特性以及地表反照率确定来影响对流层 NO 柱的不确定性。在气溶胶组成中,二次无机气溶胶在城市群中对 NO 不确定性的影响最大,可达 43.5%,而在生物质燃烧季节,有机气溶胶对 NO 不确定性的贡献可达-8.9 至 37.3%。不同气溶胶物种的可能相反影响突出了气溶胶校正对对流层 NO 反演的重要性和复杂性,并表明需要全面了解气溶胶特性。这对于解释对流层 NO 柱的季节性变化或长期趋势以及减轻臭氧和细颗粒物污染特别重要。