选择一个PACC:比较阿尔茨海默病研究中特定领域和一般认知综合指标

Pick a PACC: Comparing domain-specific and general cognitive composites in Alzheimer disease research.

作者信息

McKay Nicole S, Millar Peter R, Nicosia Jessica, Aschenbrenner Andrew J, Gordon Brian A, Benzinger Tammie L S, Cruchaga Carolos C, Schindler Suzanne E, Morris John C, Hassenstab Jason

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine.

Department of Neurology, Washington University School of Medicine.

出版信息

Neuropsychology. 2024 Jul;38(5):443-464. doi: 10.1037/neu0000949. Epub 2024 Apr 11.

Abstract

OBJECTIVE

We aimed to illustrate how complex cognitive data can be used to create domain-specific and general cognitive composites relevant to Alzheimer disease research.

METHOD

Using equipercentile equating, we combined data from the Charles F. and Joanne Knight Alzheimer Disease Research Center that spanned multiple iterations of the Uniform Data Set. Exploratory factor analyses revealed four domain-specific composites representing episodic memory, semantic memory, working memory, and attention/processing speed. The previously defined preclinical Alzheimer disease cognitive composite (PACC) and a novel alternative, the Knight-PACC, were also computed alongside a global composite comprising all available tests. These three composites allowed us to compare the usefulness of domain and general composites in the context of predicting common Alzheimer disease biomarkers.

RESULTS

General composites slightly outperformed domain-specific metrics in predicting imaging-derived amyloid, tau, and neurodegeneration burden. Power analyses revealed that the global, Knight-PACC, and attention and processing speed composites would require the smallest sample sizes to detect cognitive change in a clinical trial, while the Alzheimer Disease Cooperative Study-PACC required two to three times as many participants.

CONCLUSIONS

Analyses of cognition with the Knight-PACC and our domain-specific composites offer researchers flexibility by providing validated outcome assessments that can equate across test versions to answer a wide range of questions regarding cognitive decline in normal aging and neurodegenerative disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

目的

我们旨在说明如何利用复杂的认知数据来创建与阿尔茨海默病研究相关的特定领域和一般认知综合指标。

方法

我们使用等百分位等值法,合并了来自查尔斯·F. 和乔安妮·奈特阿尔茨海默病研究中心的数据,这些数据跨越了统一数据集的多个迭代版本。探索性因素分析揭示了四个特定领域的综合指标,分别代表情景记忆、语义记忆、工作记忆和注意力/处理速度。还计算了先前定义的临床前阿尔茨海默病认知综合指标(PACC)和一个新的替代指标奈特 - PACC,以及一个包含所有可用测试的全局综合指标。这三个综合指标使我们能够在预测常见阿尔茨海默病生物标志物的背景下比较特定领域和一般综合指标的有用性。

结果

在预测成像衍生的淀粉样蛋白、tau蛋白和神经退行性病变负担方面,一般综合指标略优于特定领域指标。功效分析表明,全局、奈特 - PACC以及注意力和处理速度综合指标在临床试验中检测认知变化所需的样本量最小,而阿尔茨海默病协作研究 - PACC所需的参与者数量是前者的两到三倍。

结论

使用奈特 - PACC和我们的特定领域综合指标进行认知分析,为研究人员提供了灵活性,通过提供经过验证的结果评估,这些评估可以在不同测试版本之间进行等值换算,以回答关于正常衰老和神经退行性疾病中认知衰退的广泛问题。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索