Suppr超能文献

在无体重减轻信息的结直肠癌患者中,机器学习模型识别由GLIM联合NRS - 2002诊断的营养不良的潜力。

The potential of machine learning models to identify malnutrition diagnosed by GLIM combined with NRS-2002 in colorectal cancer patients without weight loss information.

作者信息

Wu Tiantian, Xu Hongxia, Li Wei, Zhou Fuxiang, Guo Zengqing, Wang Kunhua, Weng Min, Zhou Chunling, Liu Ming, Lin Yuan, Li Suyi, He Ying, Yao Qinghua, Shi Hanping, Song Chunhua

机构信息

Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.

Department of Clinical Nutrition, Daping Hospital, Army Medical University, Chongqing, China.

出版信息

Clin Nutr. 2024 May;43(5):1151-1161. doi: 10.1016/j.clnu.2024.04.001. Epub 2024 Apr 5.

Abstract

BACKGROUND & AIMS: The key step of the Global Leadership Initiative on Malnutrition (GLIM) is nutritional risk screening, while the most appropriate screening tool for colorectal cancer (CRC) patients is yet unknown. The GLIM diagnosis relies on weight loss information, and bias or even failure to recall patients' historical weight can cause misestimates of malnutrition. We aimed to compare the suitability of several screening tools in GLIM diagnosis, and establish machine learning (ML) models to predict malnutrition in CRC patients without weight loss information.

METHODS

This multicenter cohort study enrolled 4487 CRC patients. The capability of GLIM diagnoses combined with four screening tools in predicting survival probability was compared by Kaplan-Meier curves, and the most accurate one was selected as the malnutrition reference standard. Participants were randomly assigned to a training cohort (n = 3365) and a validation cohort (n = 1122). Several ML approaches were adopted to establish models for predicting malnutrition without weight loss data. We estimated feature importance and reserved the top 30% of variables for retraining simplified models. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess and compare model performance.

RESULTS

NRS-2002 was the most suitable screening tool for GLIM diagnosis in CRC patients, with the highest hazard ratio (1.59; 95% CI, 1.43-1.77). A total of 2076 (46.3%) patients were malnourished diagnosed by GLIM combined with NRS-2002. The simplified random forest (RF) model outperformed other models with an AUC of 0.830 (95% CI, 0.805-0.854), and accuracy, sensitivity and specificity were 0.775, 0.835 and 0.742, respectively. We deployed an online application based on the simplified RF model to accurately estimate malnutrition probability in CRC patients without weight loss information (https://zzuwtt1998.shinyapps.io/dynnomapp/).

CONCLUSIONS

Nutrition Risk Screening 2002 was the optimal initial nutritional risk screening tool in the GLIM process. The RF model outperformed other models, and an online prediction tool was developed to properly identify patients at high risk of malnutrition.

摘要

背景与目的

全球营养不良领导倡议(GLIM)的关键步骤是营养风险筛查,而目前尚不清楚哪种筛查工具最适合结直肠癌(CRC)患者。GLIM诊断依赖体重减轻信息,对患者既往体重的回忆偏差甚至遗漏可能导致营养不良的误判。我们旨在比较几种筛查工具在GLIM诊断中的适用性,并建立机器学习(ML)模型,以预测无体重减轻信息的CRC患者的营养不良情况。

方法

这项多中心队列研究纳入了4487例CRC患者。通过Kaplan-Meier曲线比较了GLIM诊断结合四种筛查工具预测生存概率的能力,并选择最准确的一种作为营养不良参考标准。参与者被随机分配到训练队列(n = 3365)和验证队列(n = 1122)。采用多种ML方法建立无体重减轻数据的营养不良预测模型。我们估计了特征重要性,并保留前30%的变量用于重新训练简化模型。计算受试者工作特征曲线下面积(AUC)、准确性、敏感性和特异性,以评估和比较模型性能。

结果

NRS-2002是CRC患者GLIM诊断中最合适的筛查工具,风险比最高(1.59;95%CI,1.43-1.77)。共有2076例(46.3%)患者通过GLIM结合NRS-2002诊断为营养不良。简化随机森林(RF)模型的AUC为0.830(95%CI,0.805-0.854),优于其他模型,准确性、敏感性和特异性分别为0.775、0.835和0.742。我们基于简化RF模型部署了一个在线应用程序,以准确估计无体重减轻信息的CRC患者的营养不良概率(https://zzuwtt1998.shinyapps.io/dynnomapp/)。

结论

营养风险筛查2002是GLIM过程中最佳的初始营养风险筛查工具。RF模型优于其他模型,并开发了一个在线预测工具,以正确识别营养不良高风险患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验