Suppr超能文献

MV-SHIF:用于文档中情感-原因对提取的多视图对称假设推断融合网络。

MV-SHIF: Multi-view symmetric hypothesis inference fusion network for emotion-cause pair extraction in documents.

机构信息

School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China 310018.

School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China 310018.

出版信息

Neural Netw. 2024 Jul;175:106283. doi: 10.1016/j.neunet.2024.106283. Epub 2024 Mar 29.

Abstract

Emotion-cause pair extraction (ECPE) is a challenging task that aims to automatically identify pairs of emotions and their causes from documents. The difficulty of ECPE lies in distinguishing valid emotion-cause pairs from many irrelevant ones. Most previous methods have primarily focused on utilizing multi-task learning to extract semantic information solely from documents without explicitly encoding the relations between clauses. We propose a new approach that incorporates textual entailment paradigm aiming to infer the entailment relationship between the original document as the premise and the clauses or pairs described as the hypothesis. Our approach designs label-view hypothesis templates to improve ECPE by filtering out irrelevant emotion and cause clauses. Furthermore, we formulate candidate emotion-cause pairs as hypothesis statements, and define explicit multi-view symmetric templates to capture the emotion-cause relation semantics. The text entailment recognition for ECPE is finally implemented by fusing multi-view semantic information using a simplified capsule network. Our proposed model achieves state-of-the-art performance on ECPE compared to previous baselines. More importantly, this work demonstrates a novel effective way of applying the textual entailment paradigm to ECPE or clause-level causal discovery by designing multi-view hypothesis inference and information fusion.

摘要

情绪-原因对抽取(ECPE)是一项具有挑战性的任务,旨在从文档中自动识别情绪对及其原因。ECPE 的难点在于从许多不相关的对中区分有效的情绪-原因对。大多数先前的方法主要侧重于利用多任务学习从文档中提取语义信息,而没有明确编码子句之间的关系。我们提出了一种新方法,该方法结合文本蕴涵范式,旨在推断原始文档作为前提和描述为假设的子句或对之间的蕴涵关系。我们的方法设计了标签视图假设模板,通过过滤掉不相关的情绪和原因子句来改进 ECPE。此外,我们将候选情绪-原因对表示为假设陈述,并定义显式的多视图对称模板来捕捉情绪-原因关系语义。最后,通过使用简化的胶囊网络融合多视图语义信息来实现 ECPE 的文本蕴涵识别。与以前的基线相比,我们的模型在 ECPE 上实现了最先进的性能。更重要的是,这项工作通过设计多视图假设推理和信息融合,为 ECPE 或子句级因果发现应用文本蕴涵范式提供了一种新颖有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验