Suppr超能文献

4D-Precise:基于学习的 3D 运动估计和高时间分辨率 4DCT 重建,从治疗 2D+t X 射线投影中获取。

4D-Precise: Learning-based 3D motion estimation and high temporal resolution 4DCT reconstruction from treatment 2D+t X-ray projections.

机构信息

Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK.

Department of Infection, Immunity & Cardio Disease, University of Sheffield, Sheffield, UK.

出版信息

Comput Methods Programs Biomed. 2024 Jun;250:108158. doi: 10.1016/j.cmpb.2024.108158. Epub 2024 Apr 4.

Abstract

BACKGROUND AND OBJECTIVE

In radiotherapy treatment planning, respiration-induced motion introduces uncertainty that, if not appropriately considered, could result in dose delivery problems. 4D cone-beam computed tomography (4D-CBCT) has been developed to provide imaging guidance by reconstructing a pseudo-motion sequence of CBCT volumes through binning projection data into breathing phases. However, it suffers from artefacts and erroneously characterizes the averaged breathing motion. Furthermore, conventional 4D-CBCT can only be generated post-hoc using the full sequence of kV projections after the treatment is complete, limiting its utility. Hence, our purpose is to develop a deep-learning motion model for estimating 3D+t CT images from treatment kV projection series.

METHODS

We propose an end-to-end learning-based 3D motion modelling and 4DCT reconstruction model named 4D-Precise, abbreviated from Probabilistic reconstruction of image sequences from CBCT kV projections. The model estimates voxel-wise motion fields and simultaneously reconstructs a 3DCT volume at any arbitrary time point of the input projections by transforming a reference CT volume. Developing a Torch-DRR module, it enables end-to-end training by computing Digitally Reconstructed Radiographs (DRRs) in PyTorch. During training, DRRs with matching projection angles to the input kVs are automatically extracted from reconstructed volumes and their structural dissimilarity to inputs is penalised. We introduced a novel loss function to regulate spatio-temporal motion field variations across the CT scan, leveraging planning 4DCT for prior motion distribution estimation.

RESULTS

The model is trained patient-specifically using three kV scan series, each including over 1200 angular/temporal projections, and tested on three other scan series. Imaging data from five patients are analysed here. Also, the model is validated on a simulated paired 4DCT-DRR dataset created using the Surrogate Parametrised Respiratory Motion Modelling (SuPReMo). The results demonstrate that the reconstructed volumes by 4D-Precise closely resemble the ground-truth volumes in terms of Dice, volume similarity, mean contour distance, and Hausdorff distance, whereas 4D-Precise achieves smoother deformations and fewer negative Jacobian determinants compared to SuPReMo.

CONCLUSIONS

Unlike conventional 4DCT reconstruction techniques that ignore breath inter-cycle motion variations, the proposed model computes both intra-cycle and inter-cycle motions. It represents motion over an extended timeframe, covering several minutes of kV scan series.

摘要

背景与目的

在放射治疗计划中,呼吸运动引起的运动不确定性,如果不加以适当考虑,可能导致剂量传递问题。4D 锥形束 CT(4D-CBCT)的发展提供了成像指导,通过将 CBCT 体数据分箱到呼吸相位来重建伪运动序列。然而,它存在伪影,并错误地描述了平均呼吸运动。此外,传统的 4D-CBCT 只能在治疗完成后使用完整的千伏投影序列进行事后生成,限制了其应用。因此,我们的目的是开发一种基于深度学习的运动模型,用于从治疗千伏投影序列估计 3D+t CT 图像。

方法

我们提出了一种端到端学习的 3D 运动建模和 4DCT 重建模型,名为 4D-Precise,缩写为从 CBCT kV 投影重建图像序列的概率重建。该模型通过变换参考 CT 体数据来估计体素级别的运动场,并同时重建输入投影中任意任意时间点的 3DCT 体数据。通过开发 Torch-DRR 模块,它可以通过在 PyTorch 中计算数字重建射线照片(DRR)来实现端到端训练。在训练过程中,与输入 kV 匹配投影角度的 DRR 会自动从重建体积中提取出来,并对其与输入的结构差异进行惩罚。我们引入了一种新的损失函数来调节 CT 扫描过程中的时空运动场变化,利用规划 4DCT 来估计先验运动分布。

结果

该模型使用三个千伏扫描序列进行患者特异性训练,每个序列包括超过 1200 个角度/时间投影,然后在另外三个扫描序列上进行测试。这里分析了五个患者的成像数据。此外,该模型还在使用替代参数化呼吸运动建模(SuPReMo)创建的模拟配对 4DCT-DRR 数据集上进行了验证。结果表明,4D-Precise 重建的体数据在 Dice、体积相似性、平均轮廓距离和 Hausdorff 距离方面与真实数据非常相似,而与 SuPReMo 相比,4D-Precise 实现了更平滑的变形和更少的负雅可比行列式。

结论

与忽略呼吸周期内运动变化的传统 4DCT 重建技术不同,该模型计算了内周期和外周期运动。它代表了一个扩展的时间段内的运动,覆盖了几分钟的千伏扫描序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验