Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710.
Med Phys. 2013 Dec;40(12):121701. doi: 10.1118/1.4825097.
To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.
Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.
For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground-truth" onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)∕4.9 mm (±3.0 mm), 96.07% (±31.48%)∕12.1 mm (±3.9 mm) and 11.45% (±9.37%)∕1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)∕4.9 mm (±3.0 mm), 75.98% (±27.21%)∕9.9 mm (±4.0 mm), and 5.22% (±2.12%)∕0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)∕3.2 mm (±2.2 mm), 24.57% (±18.18%)∕2.9 mm (±2.0 mm), and 10.48% (±9.50%)∕1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD∕COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased.
The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.
开发一种使用先验信息和有限角度投影来估计 onboard 4D-CBCT 的技术,以便对肺部放疗的 4D 目标进行潜在验证。
将 onboard 4D-CBCT 的每个相位视为从计划 4D-CT 的一个选定相位(先验体积)的变形。使用运动建模和自由变形(MM-FD)技术求解变形场图(DFM)。在 MM-FD 技术中,DFM 是使用基于主成分分析(PCA)从计划 4D-CT 中提取的运动模型来估计的。通过将变形体积的数字重建射线照片与有限角度 onboard 投影(数据保真度约束)匹配,优化运动模型参数。然后,使用基于数据保真度约束和变形能最小化的 FD 模型对估计的 DFM 进行微调。使用 4D 数字扩展心脏胸廓体模来评估 MM-FD 技术。模拟了一位具有 30 毫米直径病变的肺部患者,从计划 4D-CT 到 onboard 体积,包括呼吸幅度、病变大小和病变平均位置以及病变和身体呼吸周期之间的相位差的变化。比较了在估计和“真实”onboard 4D-CBCT 中勾画的病变。计算了 3D 体积百分比差异(VPD)和质心位移(COMS),以评估三种技术的估计准确性:MM-FD、MM 仅和 FD 仅。模拟了不同的 onboard 投影采集场景和投影噪声水平,以研究它们对估计准确性的影响。
对于所有模拟的患者和投影采集场景,在先期图像和“真实”onboard 图像中病变的平均 VPD(±SD)/COMS(±SD)分别为 136.11%(±42.76%)/15.5 毫米(±3.9 毫米)。使用正交视图 15°-每个扫描角度,对于 MM 仅、FD 仅和 MM-FD 技术,在估计和“真实”onboard 图像中病变的平均 VPD/COMS 分别为 60.10%(±27.17%)/4.9 毫米(±3.0 毫米)、96.07%(±31.48%)/12.1 毫米(±3.9 毫米)和 11.45%(±9.37%)/1.3 毫米(±1.3 毫米)。对于正交视图 30°-每个扫描角度,相应的结果分别为 59.16%(±26.66%)/4.9 毫米(±3.0 毫米)、75.98%(±27.21%)/9.9 毫米(±4.0 毫米)和 5.22%(±2.12%)/0.5 毫米(±0.4 毫米)。对于 3°、30°和 60°的单视图扫描角度,MM-FD 技术的结果分别为 32.77%(±17.87%)/3.2 毫米(±2.2 毫米)、24.57%(±18.18%)/2.9 毫米(±2.0 毫米)和 10.48%(±9.50%)/1.1 毫米(±1.3 毫米)。对于正交视图 30°-每个扫描角度和投影角采样间隔为 0.6°、1.2°和 2.5°,MM-FD 技术产生相似的 VPD(最大偏差 2.91%)和 COMS(最大偏差 0.6 毫米),而稀疏采样导致更大的 VPD/COMS。在投影数量相等的情况下,使用散射的 360°扫描角度的估计结果略优于使用正交视图 30°-每个扫描角度的结果。随着噪声水平的增加,MM-FD 技术的估计精度降低。
与 MM 仅和 FD 仅技术相比,使用先验计划 4D-CT 和有限角度投影的 MM-FD 技术极大地提高了 onboard 4D-CBCT 的估计精度,可用于 inter/intrafractional 4D 定位验证。