文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由相同初始致癌驱动因素引起的鳞状细胞癌中预先存在的不同免疫谱导致对免疫检查点抑制剂的不同反应。

Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers.

机构信息

Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.

Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.

出版信息

J Exp Clin Cancer Res. 2022 Apr 2;41(1):123. doi: 10.1186/s13046-022-02337-x.


DOI:10.1186/s13046-022-02337-x
PMID:35366939
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8976353/
Abstract

BACKGROUND: While immune checkpoint inhibitors (ICI) were approved for head and neck squamous cell carcinomas (HNSCCs), the response rate remains relatively low. Mechanisms underlying ICI unresponsiveness versus sensitivity are not fully understood. METHOD: To better delineate differential responses to ICI treatment, we employed mouse SCC models, termed KPPA tumors that were caused by deleting p53 and hyperactivating PIK3CA, two most frequently mutated genes in human HNSCCs. We transplanted two KPPA tumor lines (TAb2 versus TCh3) into C57BL/6 recipients and examined the immune tumor microenvironment using flow cytometry. Furthermore, we employed single-cell RNA sequencing to identify the difference in tumor infiltrating lymphocytes (TILs). RESULTS: We found that different KPPA tumors exhibited heterogeneous immune profiles pre-existing treatment that dictated their sensitivity or unresponsiveness to anti-PD-L1. Unresponsive TAb2 tumors were highly enriched with functional tumor-associated macrophages (TAMs), especially M2-TAMs. In contrast, sensitive TCh3 tumors contained more CD8 TILs with better effector functions. TAb2 tumor cells drastically expanded F4/80 TAMs from bone marrow precursors, requiring CSF1 and VEGF. Consistently, a higher combined expression of VEGF-C and CSF1 predicts worse survival in PIK3CA/TP53 HNSCC patients. Unresponsive TAb2 tumors upregulated distinct signaling pathways that correlate with aggressive tumor phenotypes. While anti-PD-L1 did not affect the TME of TAb2 tumors, it significantly increased the number of CD8 TILs in TCh3 tumors. CONCLUSIONS: We uncovered tumor-intrinsic differences that may underlie the differential responses to ICI by establishing and employing two SCC tumor lines, TAb2 vs. TCh3, both of which harbor TP53 deletion and PIK3CA hyperactivation. Our study indicates the limitation of stratifying cancers according to their genetic alterations and suggests that evaluating HNSCC tumor-intrinsic cues along with immune profiles in the TME may help better predict ICI responses. Our experimental models may provide a platform for pinpointing tumor-intrinsic differences underlying an immunosuppressive TME in HNSCCs and for testing combined immunotherapies targeting either tumor-specific or TAM-specific players to improve ICI efficacy.

摘要

背景:尽管免疫检查点抑制剂(ICI)已被批准用于头颈部鳞状细胞癌(HNSCC),但其反应率仍相对较低。ICI 无应答与敏感的机制尚不完全清楚。

方法:为了更好地描绘对 ICI 治疗的不同反应,我们使用了两种小鼠 SCC 模型,称为 KPPA 肿瘤,其由 p53 缺失和 PIK3CA 过度激活引起,这两种基因是人类 HNSCC 中最常发生突变的基因。我们将两种 KPPA 肿瘤系(TAb2 与 TCh3)移植到 C57BL/6 受体中,并使用流式细胞术检查肿瘤免疫微环境。此外,我们还采用单细胞 RNA 测序来鉴定肿瘤浸润淋巴细胞(TIL)的差异。

结果:我们发现,不同的 KPPA 肿瘤表现出预先存在的治疗的异质性免疫特征,这些特征决定了它们对抗 PD-L1 的敏感性或无应答性。无应答性 TAb2 肿瘤富含功能肿瘤相关巨噬细胞(TAMs),特别是 M2-TAMs。相比之下,敏感的 TCh3 肿瘤含有更多具有更好效应功能的 CD8 TIL。TAb2 肿瘤细胞从骨髓前体中剧烈扩增 F4/80 TAMs,这需要 CSF1 和 VEGF。一致地,VEGF-C 和 CSF1 的联合高表达预测 PIK3CA/TP53 HNSCC 患者的预后更差。无应答性 TAb2 肿瘤上调了与侵袭性肿瘤表型相关的独特信号通路。虽然抗 PD-L1 不影响 TAb2 肿瘤的 TME,但它显著增加了 TCh3 肿瘤中 CD8 TIL 的数量。

结论:我们通过建立和使用两种 SCC 肿瘤系(TAb2 与 TCh3)来揭示肿瘤内在差异,这些肿瘤均具有 TP53 缺失和 PIK3CA 过度激活,这可能是导致对 ICI 不同反应的基础。我们的研究表明,根据癌症的遗传改变对癌症进行分层存在局限性,并表明评估 HNSCC 肿瘤内在线索以及 TME 中的免疫特征可能有助于更好地预测 ICI 反应。我们的实验模型可能为确定 HNSCC 中免疫抑制性 TME 背后的肿瘤内在差异提供一个平台,并为测试针对肿瘤特异性或 TAM 特异性靶点的联合免疫疗法提供平台,以提高 ICI 的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/c6a48cc4378d/13046_2022_2337_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b229740a85b6/13046_2022_2337_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/42f42525a091/13046_2022_2337_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/677d7b7fda63/13046_2022_2337_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/738083b2a612/13046_2022_2337_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b38d1c5f4887/13046_2022_2337_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b3a5440b8016/13046_2022_2337_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/a48e11ba2d79/13046_2022_2337_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/c6a48cc4378d/13046_2022_2337_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b229740a85b6/13046_2022_2337_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/42f42525a091/13046_2022_2337_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/677d7b7fda63/13046_2022_2337_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/738083b2a612/13046_2022_2337_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b38d1c5f4887/13046_2022_2337_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/b3a5440b8016/13046_2022_2337_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/a48e11ba2d79/13046_2022_2337_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/885e/8976353/c6a48cc4378d/13046_2022_2337_Fig8_HTML.jpg

相似文献

[1]
Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers.

J Exp Clin Cancer Res. 2022-4-2

[2]
Deletion of p53 and Hyper-Activation of PIK3CA in Keratin-15 Stem Cells Lead to the Development of Spontaneous Squamous Cell Carcinoma.

Int J Mol Sci. 2020-9-9

[3]
Differential tumor immune microenvironment coupled with tumor progression or tumor eradication in HPV-antigen expressing squamous cell carcinoma (SCC) models.

Front Immunol. 2024

[4]
Why responses to immune checkpoint inhibitors are heterogeneous in head and neck cancers: Contributions from tumor-intrinsic and host-intrinsic factors.

Front Oncol. 2022-10-18

[5]
Divergent outcomes of anti-PD-L1 treatment coupled with host-intrinsic differences in TCR repertoire and distinct T cell activation states in responding versus non-responding tumors.

Front Immunol. 2022

[6]
Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts.

J Immunother Cancer. 2021-1

[7]
The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naïve tumors with immune checkpoint inhibitors.

J Exp Clin Cancer Res. 2022-9-20

[8]
MHC class I upregulation contributes to the therapeutic response to radiotherapy in combination with anti-PD-L1/anti-TGF-β in squamous cell carcinomas with enhanced CD8 T cell memory-driven response.

Cancer Lett. 2025-1-1

[9]
Impacts of combining PD-L1 inhibitor and radiotherapy on the tumour immune microenvironment in a mouse model of esophageal squamous cell carcinoma.

BMC Cancer. 2025-3-14

[10]
Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice.

Int J Mol Sci. 2022-9-14

引用本文的文献

[1]
CMTM6 status predicts survival in head and neck squamous cell carcinoma and correlates with PD-L1 expression.

Discov Oncol. 2024-12-4

[2]
Targeting Myeloid Cells in Head and Neck Squamous Cell Carcinoma: A Kinase Inhibitor Library Screening Approach.

Int J Mol Sci. 2024-11-15

[3]
Differential tumor immune microenvironment coupled with tumor progression or tumor eradication in HPV-antigen expressing squamous cell carcinoma (SCC) models.

Front Immunol. 2024

[4]
New perspectives on biology, disease progression, and therapy response of head and neck cancer gained from single cell RNA sequencing and spatial transcriptomics.

Oncol Res. 2023

[5]
Damage-associated molecular patterns and sensing receptors based molecular subtypes in malignant pleural mesothelioma and implications for immunotherapy.

Front Immunol. 2023

[6]
The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy.

Mol Cancer. 2023-4-6

[7]
Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing.

Front Immunol. 2022

[8]
Why responses to immune checkpoint inhibitors are heterogeneous in head and neck cancers: Contributions from tumor-intrinsic and host-intrinsic factors.

Front Oncol. 2022-10-18

[9]
Recent Advances and Challenges in Cancer Immunotherapy.

Cancers (Basel). 2022-8-17

[10]
Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion.

Cancers (Basel). 2022-6-26

本文引用的文献

[1]
Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function.

Nat Commun. 2021-11-3

[2]
Immunotherapy in Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck.

Front Oncol. 2021-9-1

[3]
Macrophage Polarization States in the Tumor Microenvironment.

Int J Mol Sci. 2021-6-29

[4]
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases.

Int J Mol Sci. 2021-3-28

[5]
Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade.

Front Oncol. 2021-3-11

[6]
Analysis of the Prognosis and Therapeutic Value of the CXC Chemokine Family in Head and Neck Squamous Cell Carcinoma.

Front Oncol. 2021-1-8

[7]
Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts.

J Immunother Cancer. 2021-1

[8]
Head and neck squamous cell carcinoma.

Nat Rev Dis Primers. 2020-11-26

[9]
The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy.

Front Oncol. 2020-11-3

[10]
Upregulation of CSF-1 is correlated with elevated TAM infiltration and poor prognosis in oral squamous cell carcinoma.

Am J Transl Res. 2020-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索