Yang Xiao-Long, Ma Xiao-Fei, Ye Zi-Piao, Yang Long-Sheng, Shi Jun-Bo, Wang Xun, Zhou Bei-Bei, Wang Fu-Biao, Deng Zi-Fa
School of Life Sciences, Nantong University, Nantong, China.
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Front Plant Sci. 2024 Mar 28;15:1291630. doi: 10.3389/fpls.2024.1291630. eCollection 2024.
Climate change, characterized by rising atmospheric CO levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity () in sweet sorghum under different temperature and CO conditions. Comparative analyses were conducted between the -, -, -, WUE-, and WUE- models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUE) and instantaneous WUE (WUE) trends with increasing . The fitted maximum values of , , , WUE, and WUE and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high values for -, -, and - modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to , overestimating WUE. Across different leaf temperatures, , , and of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum , , and but consistently declined maximum WUE and WUE. However, WUE declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum saturated at current atmospheric CO levels, with no significant gains under 550 μmol mol. Instead, stomatal closure enhanced WUE under elevated CO by coordinated and reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.
气候变化以大气中二氧化碳水平上升和气温升高为特征,给全球作物生产带来了重大挑战。甜高粱是一种在干旱地区广泛种植的重要C4谷物,是可持续生物能源生产的一个有前途的候选品种。本研究调查了在不同温度和二氧化碳条件下,甜高粱光合作用和叶片尺度水分利用效率(WUE)对不同光强(I)的响应。对Ye等人提出的α-,β-,γ-,WUE-i,和WUE-c模型与广泛使用的非矩形双曲线(NRH)模型进行了比较分析,以拟合光响应曲线。Ye的模型有效地复制了甜高粱的光响应曲线,准确地捕捉了随着I增加内在水分利用效率(WUE-i)和瞬时水分利用效率(WUE-c)下降的趋势。拟合的α,β,γ,WUE-i和WUE-c的最大值及其饱和光强与观测值密切匹配,这与NRH模型不同。尽管NRH模型在α-,β-,和γ-建模中显示出较高的R2值,但它返回的最大值与观测值有显著偏差,并且未能生成饱和光强。它也没有充分表示WUE对I的响应,高估了WUE。在不同的叶片温度下,甜高粱的α,β,和γ显示出可比的光响应模式。温度升高增加了最大α,β,和γ,但最大WUE-i和WUE-c持续下降。然而,由于蒸腾作用增加超过碳同化作用,WUE-c下降更为明显。至关重要的是,甜高粱在当前大气二氧化碳水平下达到饱和,在550 μmol mol-1下没有显著增加。相反,气孔关闭通过协调A和E的减少而不是改善碳同化作用来提高高二氧化碳浓度下的WUE。尽管如此,这种响应在同时高温下减弱,表明二氧化碳和温度在调节植物响应方面存在复杂的相互作用。这些发现为甜高粱的光合动态提供了有价值的见解,有助于预测产量和优化栽培实践。此外,我们的方法为评估不同植物物种的叶片光合作用和WUE动态提供了有价值的参考。