Fuster-Pons Alberto, Murillo-Sánchez Alba, Méndez-Vigo Belén, Marcer Arnald, Pieper Bjorn, Torres-Pérez Rafael, Oliveros Juan Carlos, Tsiantis Miltos, Picó F Xavier, Alonso-Blanco Carlos
Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain.
CREAF, Cerdanyola del Vallès 08193, Spain.
Plant Physiol. 2024 Dec 2;196(4):2730-2748. doi: 10.1093/plphys/kiae213.
Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.
在许多被子植物种群中,表皮毛模式(数量和分布)的自然变异很显著。然而,不同物种中这种多样性背后的遗传机制及其环境驱动因素的平行程度仍不清楚。为了解决这些问题,我们分析了拟南芥(Arabidopsis thaliana)的近缘种碎米荠(Cardamine hirsuta)叶片表皮毛模式多样性的基因组和环境基础。我们对123个野生材料的基因组多样性、不同温度下的叶片表皮毛模式以及环境适应性进行了表征。核苷酸多样性和生物地理分布模型确定了两个具有不同种群统计学和适应性历史的主要遗传谱系。此外,碎米荠在表皮毛模式和对温度的可塑性方面表现出显著变异。碎米荠的表皮毛数量与春季降水量呈正相关,但与温度呈负相关,这与拟南芥的气候模式相反。相比之下,对碎米荠无毛材料的遗传分析表明,与拟南芥一样,无毛是由ChGLABRA1(ChGL1)的无效突变引起的。表型全基因组关联研究(GWAS)进一步确定了一个与低表皮毛密度和ChGL1表达相关的ChGL1单倍型组。因此,ChGL1系列的无效和部分功能丧失等位基因导致了碎米荠和拟南芥叶片表皮毛模式的平行进化。最后,GWAS还检测到了其他可能影响表皮毛模式的候选基因(如ChETC3、ChCLE17)。因此,碎米荠和拟南芥中这一性状的进化显示出部分保守的遗传机制,但可能参与了对不同环境的适应。