Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA.
Institute for Cognitive Sciences, University of Colorado Boulder, Boulder, CO, USA.
J Comput Neurosci. 2024 May;52(2):145-164. doi: 10.1007/s10827-024-00869-z. Epub 2024 Apr 12.
Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
神经活动的传播波在皮质网络中自发出现,并对刺激做出反应。波的时空结构可以指示它们所编码的信息以及维持它们的生理过程。在这里,我们研究了自适应神经场中出现的传播波的刺激-反应关系,将其作为视觉运动处理的模型。神经场方程将皮质组织的活动建模为连续可激发介质,自适应过程提供负反馈,产生局部活动模式。我们的模型中的突触连接由积分核描述,该积分核由于活动依赖性突触抑制而动态减弱,导致边缘稳定的传播波(减弱的后波)或固定速度的脉冲。我们的分析量化了弱刺激如何随时间推移改变这些波的相对位置,其特征是我们通过微扰法获得的波响应函数。持续且可见的刺激模拟移动的视觉对象。在视觉空间中跳跃的间歇性闪光可以产生平滑的明显视觉运动的体验。我们的理论和数值模拟很好地描述了波对这两种运动刺激的同步,为视觉运动的感知提供了一种机械描述。