Suppr超能文献

一种具有动态访问控制算法的新型入侵检测系统,用于检测和防御物联网节点处的入侵。

A Novel IDS with a Dynamic Access Control Algorithm to Detect and Defend Intrusion at IoT Nodes.

作者信息

Alazab Moutaz, Awajan Albara, Alazzam Hadeel, Wedyan Mohammad, Alshawi Bandar, Alturki Ryan

机构信息

Department of Intelligent Systems, Faculty of Artificial Intelligence, Al-Balqa Applied University, Al-Salt 19385, Jordan.

Cybersecurity Department, School of Computing and Data Sciences, Oryx Universal College with Liverpool John Moores University, Doha 34110, Qatar.

出版信息

Sensors (Basel). 2024 Mar 29;24(7):2188. doi: 10.3390/s24072188.

Abstract

The Internet of Things (IoT) is the underlying technology that has enabled connecting daily apparatus to the Internet and enjoying the facilities of smart services. IoT marketing is experiencing an impressive 16.7% growth rate and is a nearly USD 300.3 billion market. These eye-catching figures have made it an attractive playground for cybercriminals. IoT devices are built using resource-constrained architecture to offer compact sizes and competitive prices. As a result, integrating sophisticated cybersecurity features is beyond the scope of the computational capabilities of IoT. All of these have contributed to a surge in IoT intrusion. This paper presents an LSTM-based Intrusion Detection System (IDS) with a Dynamic Access Control (DAC) algorithm that not only detects but also defends against intrusion. This novel approach has achieved an impressive 97.16% validation accuracy. Unlike most of the IDSs, the model of the proposed IDS has been selected and optimized through mathematical analysis. Additionally, it boasts the ability to identify a wider range of threats (14 to be exact) compared to other IDS solutions, translating to enhanced security. Furthermore, it has been fine-tuned to strike a balance between accurately flagging threats and minimizing false alarms. Its impressive performance metrics (precision, recall, and F1 score all hovering around 97%) showcase the potential of this innovative IDS to elevate IoT security. The proposed IDS boasts an impressive detection rate, exceeding 98%. This high accuracy instills confidence in its reliability. Furthermore, its lightning-fast response time, averaging under 1.2 s, positions it among the fastest intrusion detection systems available.

摘要

物联网(IoT)是一种底层技术,它能够将日常设备连接到互联网,并享受智能服务带来的便利。物联网市场正以令人瞩目的16.7%的增长率增长,其市场规模接近3003亿美元。这些引人注目的数据使其成为网络犯罪分子的一个诱人目标。物联网设备采用资源受限的架构构建,以提供紧凑的尺寸和具有竞争力的价格。因此,集成复杂的网络安全功能超出了物联网的计算能力范围。所有这些因素都导致了物联网入侵事件的激增。本文提出了一种基于长短期记忆网络(LSTM)的入侵检测系统(IDS),该系统采用动态访问控制(DAC)算法,不仅能够检测入侵,还能抵御入侵。这种新颖的方法取得了令人印象深刻的97.16%的验证准确率。与大多数入侵检测系统不同,所提出的入侵检测系统模型是通过数学分析进行选择和优化的。此外,与其他入侵检测解决方案相比,它能够识别更广泛的威胁(确切地说是14种),从而增强了安全性。此外,它还经过了微调,以在准确标记威胁和最小化误报之间取得平衡。其令人印象深刻的性能指标(精确率、召回率和F1分数均徘徊在97%左右)展示了这种创新型入侵检测系统提升物联网安全性的潜力。所提出的入侵检测系统拥有令人印象深刻的检测率,超过了98%。如此高的准确率使其可靠性令人信服。此外,其平均响应时间不到1.2秒,堪称闪电般快速,使其跻身于现有最快的入侵检测系统之列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d0b/11014348/b2f64a8d9e74/sensors-24-02188-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验