Uddin Md Jasim, Sherrell Jordan, Emami Anahita, Khaleghian Meysam
College of Science and Engineering, Texas State University, San Marcos, TX 78666, USA.
Sensors (Basel). 2024 Apr 8;24(7):2357. doi: 10.3390/s24072357.
Soil organic matter (SOM) is one of the best indicators to assess soil health and understand soil productivity and fertility. Therefore, measuring SOM content is a fundamental practice in soil science and agricultural research. The traditional approach (oven-dry) of measuring SOM is a costly, arduous, and time-consuming process. However, the integration of cutting-edge technology can significantly aid in the prediction of SOM, presenting a promising alternative to traditional methods. In this study, we tested the hypothesis that an accurate estimate of SOM might be obtained by combining the ground-based sensor-captured soil parameters and soil analysis data along with drone images of the farm. The data are gathered using three different methods: ground-based sensors detect soil parameters such as temperature, pH, humidity, nitrogen, phosphorous, and potassium of the soil; aerial photos taken by UAVs display the vegetative index (NDVI); and the Haney test of soil analysis reports measured in a lab from collected samples. Our datasets combined the soil parameters collected using ground-based sensors, soil analysis reports, and NDVI content of farms to perform the data analysis to predict SOM using different machine learning algorithms. We incorporated regression and ANOVA for analyzing the dataset and explored seven different machine learning algorithms, such as linear regression, Ridge regression, Lasso regression, random forest regression, Elastic Net regression, support vector machine, and Stochastic Gradient Descent regression to predict the soil organic matter content using other parameters as predictors.
土壤有机质(SOM)是评估土壤健康状况以及了解土壤生产力和肥力的最佳指标之一。因此,测量土壤有机质含量是土壤科学和农业研究中的一项基本实践。传统的测量土壤有机质的方法(烘干法)成本高、难度大且耗时。然而,前沿技术的整合能够显著助力土壤有机质的预测,为传统方法提供了一种有前景的替代方案。在本研究中,我们检验了这样一个假设:通过结合地面传感器获取的土壤参数、土壤分析数据以及农场的无人机图像,或许能够准确估算土壤有机质。数据通过三种不同方法收集:地面传感器检测土壤参数,如土壤温度、pH值、湿度、氮、磷和钾;无人机拍摄的航空照片显示植被指数(归一化植被指数,NDVI);以及在实验室对采集样本进行土壤分析报告的哈尼测试。我们的数据集结合了使用地面传感器收集的土壤参数、土壤分析报告以及农场的归一化植被指数含量,以执行数据分析,使用不同的机器学习算法预测土壤有机质。我们纳入回归分析和方差分析来分析数据集,并探索了七种不同的机器学习算法,如线性回归、岭回归、套索回归、随机森林回归、弹性网络回归、支持向量机和随机梯度下降回归,以使用其他参数作为预测因子来预测土壤有机质含量。