Suppr超能文献

用于水鸟调查的无人机形状、飞行路径和相机类型评估:干扰效应与物种识别

Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

作者信息

McEvoy John F, Hall Graham P, McDonald Paul G

机构信息

Centre for Behavioural and Physiological Ecology, Zoology, University of New England , Armidale, NSW , Australia.

出版信息

PeerJ. 2016 Mar 21;4:e1831. doi: 10.7717/peerj.1831. eCollection 2016.

Abstract

The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

摘要

近年来,无人驾驶飞行器(UAV)在生态研究中的应用迅速增加,但很少有研究评估这些工具对目标对象的干扰影响,特别是在观察如鸭科水鸟等易受干扰的物种时。在本研究中,我们评估了一系列不同形状和大小的无人机在2015年3月至5月间对澳大利亚东部两个地点的自由生活、非繁殖期水鸟造成的干扰程度,以及机载数字成像系统为明确识别这些分类群提供足够分辨率的能力。我们发现,当无人机在水面上方至少60米(固定翼模型)或个体上方40米(多旋翼模型)飞行时,对野生混合物种水鸟群几乎没有明显的干扰影响。在较低高度,以及当固定翼无人机直接接近目标或在动物附近快速改变高度和/或方向时,可以看到水鸟以从无人机游开直至离开水面并飞离无人机的形式受到干扰。使用不会造成干扰的切线进近飞行路径,商用机载光学设备能够捕捉到足够质量的图像,以识别水鸟,甚至是如燕子等更小的分类群。我们的结果表明,通过对起降地点、飞行路径进行合理规划并仔细选择无人机型号,无人机可以成为准确调查野生水鸟种群的优秀工具,并能提供存档数据,且与载人航空调查等传统方法相比,后勤问题更少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a02a/4806640/378cbd73f7d7/peerj-04-1831-g001.jpg

相似文献

2
Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles.
Front Robot AI. 2023 Jun 28;10:1137763. doi: 10.3389/frobt.2023.1137763. eCollection 2023.
4
Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
Sensors (Basel). 2015 Jul 13;15(7):16848-65. doi: 10.3390/s150716848.
5
Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys.
Ecol Evol. 2017 Dec 25;8(2):1328-1338. doi: 10.1002/ece3.3731. eCollection 2018 Jan.
6
Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.
PLoS One. 2013 Nov 4;8(11):e79556. doi: 10.1371/journal.pone.0079556. eCollection 2013.
7
Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind.
Sensors (Basel). 2018 Jul 3;18(7):2132. doi: 10.3390/s18072132.
10
UAV Flight and Landing Guidance System for Emergency Situations .
Sensors (Basel). 2019 Oct 15;19(20):4468. doi: 10.3390/s19204468.

引用本文的文献

1
CECS-CLIP: Fusing Domain Knowledge for Rare Wildlife Detection Model.
Animals (Basel). 2024 Oct 9;14(19):2909. doi: 10.3390/ani14192909.
2
On the move: Influence of animal movements on count error during drone surveys.
Ecol Evol. 2024 Sep 29;14(10):e70287. doi: 10.1002/ece3.70287. eCollection 2024 Oct.
3
Application of Artificial Intelligence and Sensor Fusion for Soil Organic Matter Prediction.
Sensors (Basel). 2024 Apr 8;24(7):2357. doi: 10.3390/s24072357.
5
Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms.
PeerJ Comput Sci. 2023 Aug 25;9:e1502. doi: 10.7717/peerj-cs.1502. eCollection 2023.
6
A colonial-nesting seabird shows no heart-rate response to drone-based population surveys.
Sci Rep. 2022 Nov 5;12(1):18804. doi: 10.1038/s41598-022-22492-7.
8
Using piecewise regression to identify biological phenomena in biotelemetry datasets.
J Anim Ecol. 2022 Sep;91(9):1755-1769. doi: 10.1111/1365-2656.13779. Epub 2022 Jul 31.
9
Perspectives in machine learning for wildlife conservation.
Nat Commun. 2022 Feb 9;13(1):792. doi: 10.1038/s41467-022-27980-y.
10
Behavioral responses of blue-winged teal and northern shoveler to unmanned aerial vehicle surveys.
PLoS One. 2022 Jan 19;17(1):e0262393. doi: 10.1371/journal.pone.0262393. eCollection 2022.

本文引用的文献

1
Proximate cues to phases of movement in a highly dispersive waterfowl, Anas superciliosa.
Mov Ecol. 2015 Sep 1;3(1):21. doi: 10.1186/s40462-015-0048-3. eCollection 2015.
2
Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.
Curr Biol. 2015 Aug 31;25(17):2278-83. doi: 10.1016/j.cub.2015.07.024. Epub 2015 Aug 13.
3
Population census of a large common tern colony with a small unmanned aircraft.
PLoS One. 2015 Apr 15;10(4):e0122588. doi: 10.1371/journal.pone.0122588. eCollection 2015.
4
Approaching birds with drones: first experiments and ethical guidelines.
Biol Lett. 2015 Feb;11(2):20140754. doi: 10.1098/rsbl.2014.0754.
5
Spotting East African mammals in open savannah from space.
PLoS One. 2014 Dec 31;9(12):e115989. doi: 10.1371/journal.pone.0115989. eCollection 2014.
6
American exceptionalism: population trends and flight initiation distances in birds from three continents.
PLoS One. 2014 Sep 16;9(9):e107883. doi: 10.1371/journal.pone.0107883. eCollection 2014.
8
A semi-automated single day image differencing technique to identify animals in aerial imagery.
PLoS One. 2014 Jan 14;9(1):e85239. doi: 10.1371/journal.pone.0085239. eCollection 2014.
9
Buses, cars, bicycles and walkers: the influence of the type of human transport on the flight responses of waterbirds.
PLoS One. 2013 Dec 18;8(12):e82008. doi: 10.1371/journal.pone.0082008. eCollection 2013.
10
Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.
PLoS One. 2013 Nov 4;8(11):e79556. doi: 10.1371/journal.pone.0079556. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验