Suppr超能文献

非晶态灰黄霉素相变的热结构表征:从亚-T 弛豫和晶体生长到高温分解

Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-T Relaxation and Crystal Growth to High-Temperature Decomposition.

作者信息

Svoboda Roman, Kozlová Kateřina

机构信息

Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

出版信息

Molecules. 2024 Mar 28;29(7):1516. doi: 10.3390/molecules29071516.

Abstract

The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of 395 kJ·mol can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (235 kJ·mol) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N and in air atmospheres with the activation energy of ~105 kJ·mol. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.

摘要

采用热分析、显微镜、光谱和衍射技术研究了非晶态灰黄霉素(GSF)的结构弛豫、晶体生长和热分解过程。约395 kJ·mol的活化能可归因于根据Tool-Narayanaswamy-Moynihan模型描述的结构弛豫运动。虽然块状非晶态GSF非常稳定,但机械缺陷和微裂纹的存在会导致从玻璃态转变为过冷液态(约80℃)引发部分结晶。这种晶体生长模式的一个关键方面是在被破坏的非晶相附近存在足够的成核点;晶体生长本身是速率决定步骤。主要的宏观(量热观察到的)结晶过程发生在115 - 135℃的非晶态GSF中。在这两种情况下,都主要形成常见的多晶型物I。虽然粗GSF粉末的宏观结晶表现出与块状材料中微观观察到的生长相似的活化能(约235 kJ·mol),但细GSF粉末宏观结晶的活化能会随着温度和/或加热速率的增加而逐渐从微观表面生长的活化能(约105 kJ·mol)变化为块状GSF中观察到的生长活化能。利用两个独立的自催化Šesták-Berggren过程,可以用复杂机制准确描述宏观晶体生长动力学。GSF在氮气和空气气氛中的热分解过程相同,活化能约为105 kJ·mol。GSF的熔化温度与分解起始温度(均为200℃)的重合表明蒸发可能引发分解过程或与分解过程竞争。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb6f/11013327/02d1cab1d8dd/molecules-29-01516-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验