Suchikova Yana, Kovachov Sergii, Bohdanov Ihor, Karipbayev Zhakyp T, Zhydachevskyy Yaroslav, Lysak Anastasiia, Pankratov Vladimir, Popov Anatoli I
The Department of Physics and Methods of Teaching Physics, Berdyansk State Pedagogical University, 71100 Berdyansk, Ukraine.
Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
Materials (Basel). 2024 Mar 29;17(7):1566. doi: 10.3390/ma17071566.
This study introduces an innovative method for synthesizing Cadmium Oxide /Cadmium Sulfide/Zinc Oxide heterostructures (CdO/CdS/ZnO), emphasizing their potential application in solar energy. Utilizing a combination of electrochemical deposition and oxygen annealing, the research provides a thorough analysis of the heterostructures through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The findings reveal a complex surface morphology and a composite structure with significant contributions from hexagonal CdS and cubic CdO phases. The study highlights the uniformity in the distribution of luminescent centers and the crystalline quality of the heterostructures, which is evident from the PL analysis. The redshift observed in the emission peak and the additional peaks in the excitation spectrum indicate intricate optical properties influenced by various factors, including quantum confinement and lattice strain. The research demonstrates these heterostructures' potential in enhancing solar cells' efficiency and applicability in optoelectronic devices. This comprehensive characterization and analysis pave the way for future optimization and application in efficient and sustainable solar energy solutions.
本研究介绍了一种合成氧化镉/硫化镉/氧化锌异质结构(CdO/CdS/ZnO)的创新方法,强调了其在太阳能领域的潜在应用。该研究利用电化学沉积和氧气退火相结合的方法,通过扫描电子显微镜(SEM)、能量色散X射线(EDX)光谱、X射线衍射(XRD)、拉曼光谱和光致发光(PL)光谱对异质结构进行了全面分析。研究结果揭示了一种复杂的表面形态和一种复合结构,其中六方相CdS和立方相CdO相起到了重要作用。该研究强调了发光中心分布的均匀性和异质结构的晶体质量,这从PL分析中可以明显看出。发射峰中观察到的红移和激发光谱中的附加峰表明,其复杂的光学性质受到多种因素的影响,包括量子限制和晶格应变。该研究证明了这些异质结构在提高太阳能电池效率以及在光电器件中的适用性方面的潜力。这种全面的表征和分析为未来在高效可持续太阳能解决方案中的优化和应用铺平了道路。