Suppr超能文献

GLULA:用于基于可穿戴传感器进行高效人类活动识别的基于线性注意力的模型。

GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors.

作者信息

Bolatov Aldiyar, Yessenbayeva Aigerim, Yazici Adnan

机构信息

Department of Computer Science, Nazarbayev University, Astana, Kazakhstan.

出版信息

Wearable Technol. 2024 Apr 5;5:e10. doi: 10.1017/wtc.2024.5. eCollection 2024.

Abstract

Body-worn sensor data is used in monitoring patient activity during rehabilitation and also can be extended to controlling rehabilitation devices based on the activity of the person. The primary focus of research has been on effectively capturing the spatiotemporal dependencies in the data collected by these sensors and efficiently classifying human activities. With the increasing complexity and size of models, there is a growing emphasis on optimizing their efficiency in terms of memory usage and inference time for real-time usage and mobile computers. While hybrid models combining convolutional and recurrent neural networks have shown strong performance compared to traditional approaches, self-attention-based networks have demonstrated even superior results. However, instead of relying on the same transformer architecture, there is an opportunity to develop a novel framework that incorporates recent advancements to enhance speed and memory efficiency, specifically tailored for human activity recognition (HAR) tasks. In line with this approach, we present GLULA, a unique architecture for HAR. GLULA combines gated convolutional networks, branched convolutions, and linear self-attention to achieve efficient and powerful solutions. To enhance the performance of our proposed architecture, we employed manifold mixup as an augmentation variant which proved beneficial in limited data settings. Extensive experiments were conducted on five benchmark datasets: PAMAP2, SKODA, OPPORTUNITY, DAPHNET, and USC-HAD. Our findings demonstrate that GLULA outperforms recent models in the literature on the latter four datasets but also exhibits the lowest parameter count and close to the fastest inference time among state-of-the-art models.

摘要

可穿戴式传感器数据被用于在康复过程中监测患者活动,并且还可以扩展到根据人的活动来控制康复设备。研究的主要重点一直是有效地捕捉这些传感器收集的数据中的时空依赖性,并对人类活动进行有效分类。随着模型的复杂性和规模不断增加,人们越来越强调在内存使用和推理时间方面优化其效率,以实现实时使用和适用于移动计算机。虽然与传统方法相比,结合卷积神经网络和循环神经网络的混合模型表现出了强大的性能,但基于自注意力的网络已证明有更优异的结果。然而,除了依赖相同的Transformer架构之外,还有机会开发一种新颖的框架,该框架纳入了最新进展,以提高速度和内存效率,特别针对人类活动识别(HAR)任务量身定制。按照这种方法,我们提出了GLULA,一种用于HAR的独特架构。GLULA结合了门控卷积网络、分支卷积和线性自注意力,以实现高效且强大的解决方案。为了提高我们提出的架构的性能,我们采用了流形混合作为一种增强变体,事实证明它在有限数据设置中是有益的。我们在五个基准数据集上进行了广泛的实验:PAMAP2、SKODA、OPPORTUNITY、DAPHNET和USC-HAD。我们的研究结果表明,GLULA在后面四个数据集上优于文献中的最新模型,而且在最先进的模型中,它还具有最低的参数数量和接近最快的推理时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e41/11016367/ff688d4fe66c/S2631717624000057_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验