Suppr超能文献

基于多期CT影像组学的膀胱尿路上皮癌经尿道膀胱肿瘤电切术后的预后预测价值

Prognostic predictive value of urothelial carcinoma of the bladder after TURBT based on multiphase CT radiomics.

作者信息

Xue Jing, Zhuang Zijian, Peng Lin, Chen Xingchi, Zhu Haitao, Wang Dongqing, Zhang Lirong

机构信息

Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.

School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.

出版信息

Abdom Radiol (NY). 2024 Jun;49(6):1975-1986. doi: 10.1007/s00261-024-04265-0. Epub 2024 Apr 15.

Abstract

OBJECTIVE

To investigate multiphase computed tomography (CT) radiomics-based combined with clinical factors to predict overall survival (OS) in patients with bladder urothelial carcinoma (BLCA) who underwent transurethral resection of bladder tumor (TURBT).

METHODS

Data were retrospectively collected from 114 patients with primary BLCA from February 2016 to February 2018. The regions of interest (ROIs) of the plain, arterial, and venous phase images were manually segmented. The Cox regression algorithm was used to establish 3 basic models for the plain phase (PP), arterial phase (AP), and venous phase (VP) and 2 combination models (AP + VP and PP + AP + VP). The highest-performing radiomics model was selected to calculate the radiomics score (Rad-score), and independent risk factors affecting patients' OS were analyzed using Cox regression. The Rad-score and clinical risk factors were combined to construct a joint model and draw a visualized nomogram.

RESULTS

The combined model of PP + AP + VP showed the best performance with the Akaike Information Criterion (AIC) and Consistency Index (C-index) in the test group of 130.48 and 0.779, respectively. A combined model constructed with two independent risk factors (age and Ki-67 expression status) in combination with the Rad-score outperformed the radiomics model alone; AIC and C-index in the test group were 115.74 and 0.840, respectively. The calibration curves showed good agreement between the predicted probabilities of the joint model and the actual (p < 0.05). The decision curve showed that the joint model had good clinical application value within a large range of threshold probabilities.

CONCLUSION

This new model can be used to predict the OS of patients with BLCA who underwent TURBT.

摘要

目的

探讨基于多期计算机断层扫描(CT)的影像组学联合临床因素,预测行经尿道膀胱肿瘤切除术(TURBT)的膀胱尿路上皮癌(BLCA)患者的总生存期(OS)。

方法

回顾性收集2016年2月至2018年2月期间114例原发性BLCA患者的数据。手动分割平扫、动脉期和静脉期图像的感兴趣区域(ROI)。使用Cox回归算法建立平扫期(PP)、动脉期(AP)和静脉期(VP)的3个基本模型以及2个联合模型(AP + VP和PP + AP + VP)。选择性能最佳的影像组学模型计算影像组学评分(Rad-score),并使用Cox回归分析影响患者OS的独立危险因素。将Rad-score与临床危险因素相结合构建联合模型并绘制可视化列线图。

结果

PP + AP + VP联合模型在测试组中的性能最佳,Akaike信息准则(AIC)和一致性指数(C-index)分别为130.48和0.779。由两个独立危险因素(年龄和Ki-67表达状态)与Rad-score构建的联合模型优于单独的影像组学模型;测试组中的AIC和C-index分别为115.74和0.840。校准曲线显示联合模型的预测概率与实际概率之间具有良好的一致性(p < 0.05)。决策曲线表明联合模型在较大范围的阈值概率内具有良好的临床应用价值。

结论

这种新模型可用于预测行经TURBT的BLCA患者的OS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验