Suppr超能文献

人工智能在乳房重建中的应用:系统评价。

The usefulness of artificial intelligence in breast reconstruction: a systematic review.

机构信息

Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.

Department of Administration, Mayo Clinic, Jacksonville, FL, USA.

出版信息

Breast Cancer. 2024 Jul;31(4):562-571. doi: 10.1007/s12282-024-01582-6. Epub 2024 Apr 15.

Abstract

BACKGROUND

Artificial Intelligence (AI) offers an approach to predictive modeling. The model learns to determine specific patterns of undesirable outcomes in a dataset. Therefore, a decision-making algorithm can be built based on these patterns to prevent negative results. This systematic review aimed to evaluate the usefulness of AI in breast reconstruction.

METHODS

A systematic review was conducted in August 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. MEDLINE, EMBASE, SCOPUS, and Google Scholar online databases were queried to capture all publications studying the use of artificial intelligence in breast reconstruction.

RESULTS

A total of 23 studies were full text-screened after removing duplicates, and twelve articles fulfilled our inclusion criteria. The Machine Learning algorithms applied for neuropathic pain, lymphedema diagnosis, microvascular abdominal flap failure, donor site complications associated to muscle sparing Transverse Rectus Abdominis flap, surgical complications, financial toxicity, and patient-reported outcomes after breast surgery demonstrated that AI is a helpful tool to accurately predict patient results. In addition, one study used Computer Vision technology to assist in Deep Inferior Epigastric Perforator Artery detection for flap design, considerably reducing the preoperative time compared to manual identification.

CONCLUSIONS

In breast reconstruction, AI can help the surgeon by optimizing the perioperative patients' counseling to predict negative outcomes, allowing execution of timely interventions and reducing the postoperative burden, which leads to obtaining the most successful results and improving patient satisfaction.

摘要

背景

人工智能(AI)提供了一种预测建模的方法。该模型通过学习确定数据集中不良结果的特定模式,从而可以根据这些模式构建决策算法,以预防负面结果。本系统评价旨在评估 AI 在乳房重建中的实用性。

方法

按照系统评价和荟萃分析的首选报告项目指南,于 2022 年 8 月进行了系统评价。通过 MEDLINE、EMBASE、SCOPUS 和 Google Scholar 在线数据库查询,以捕获所有研究人工智能在乳房重建中应用的出版物。

结果

在去除重复项后,对 23 项研究进行了全文筛选,其中 12 篇文章符合我们的纳入标准。应用于神经痛、淋巴水肿诊断、微血管腹部皮瓣失败、与保留肌肉的横向腹直肌皮瓣相关的供区并发症、手术并发症、财务毒性和乳房手术后患者报告结果的机器学习算法表明,AI 是准确预测患者结果的有用工具。此外,有一项研究使用计算机视觉技术来协助皮瓣设计中的深下腹壁穿支动脉检测,与手动识别相比,大大减少了术前时间。

结论

在乳房重建中,AI 可以通过优化围手术期患者咨询来帮助外科医生预测不良结果,从而及时进行干预,减轻术后负担,从而获得最成功的结果并提高患者满意度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验