Suppr超能文献

Vina-FPGA-集群:基于多现场可编程门阵列的高精度、多级并行分子对接工具。

Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool With High-Accuracy and Multi-Level Parallelism.

作者信息

Ling Ming, Feng Zhihao, Chen Ruiqi, Shao Yi, Tang Shidi, Zhu Yanxiang

出版信息

IEEE Trans Biomed Circuits Syst. 2024 Dec;18(6):1321-1337. doi: 10.1109/TBCAS.2024.3388323. Epub 2024 Dec 9.

Abstract

AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33 and 7.26 speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38 speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.

摘要

在众多分子对接工具中,AutoDock Vina(Vina)因其精确性和相对较高的速度脱颖而出,在药物发现过程中发挥着关键作用。Vina在FPGA平台上的硬件加速为加快对接过程提供了一种高能效方法。然而,先前基于FPGA的Vina加速器存在几个缺点:1)简单的均匀量化会导致不可避免的精度下降;2)由于Vina的计算过程复杂,硬件设计的评估和优化阶段会延长;3)Vina中的迭代计算限制了进一步并行化的潜力;4)系统的可扩展性受到其笨拙架构的限制。为应对上述挑战,我们提出了Vina-FPGA-cluster,这是一种基于多FPGA的分子对接工具,可实现高精度和多级并行的Vina加速。在Vina-FPGA的基础上,我们首先采用混合定点量化以最小化精度损失。然后,我们提出了一种基于SystemC的模型,加速硬件加速器架构设计评估。接下来,我们提出了一种新颖的双向AG模块用于数据级并行。最后,我们优化系统架构以便在多个Xilinx ZCU104板上进行可扩展部署,实现任务级并行。Vina-FPGA-cluster在三个具有代表性的分子对接数据集上进行了测试。实验结果表明,在均方根偏差(RMSD,用于衡量成功对接结果且指标低于2Å)的情况下,Vina-FPGA-cluster的损失仅为0.2%。相对于CPU和Vina-FPGA,Vina-FPGA-cluster分别实现了27.33倍和7.26倍的加速。值得注意的是,Vina-FPGA-cluster能够实现与GPU实现方式(Vina-GPU)相同的1.38倍加速,而功耗仅为其28.99%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验