Suppr超能文献

使用现场可编程门阵列(FPGA)加速超声成像中甲状腺结节识别的推理过程。

Accelerated inference for thyroid nodule recognition in ultrasound imaging using FPGA.

作者信息

Ma Wei, Wu Xiaoxiao, Zhang Qing, Li Xiang, Wu Xinglong, Wang Jun

机构信息

School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China.

School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, P.R. China.

出版信息

Phys Eng Sci Med. 2025 May 7. doi: 10.1007/s13246-025-01548-8.

Abstract

Thyroid cancer is the most prevalent malignant tumour in the endocrine system, with its incidence steadily rising in recent years. Current central processing units (CPUs) and graphics processing units (GPUs) face significant challenges in terms of processing speed, energy consumption, cost, and scalability in the identification of thyroid nodules, making them inadequate for the demands of future green, efficient, and accessible healthcare. To overcome these limitations, this study proposes an efficient quantized inference method using a field-programmable gate array (FPGA). We employ the YOLOv4-tiny neural network model, enhancing software performance with the K-means + + optimization algorithm and improving hardware performance through techniques such as 8-bit weight quantization, batch normalization, and convolutional layer fusion. The study is based on the ZYNQ7020 FPGA platform. Experimental results demonstrate an average accuracy of 81.44% on the Tn3k dataset and 81.20% on the internal test set from a Chinese tertiary hospital. The power consumption of the FPGA platform, CPU (Intel Core i5-10200 H), and GPU (NVIDIA RTX 4090) were 3.119 watts, 45 watts, and 68 watts, respectively, with energy efficiency ratios of 5.45, 0.31, and 5.56. This indicates that the FPGA's energy efficiency is 17.6 times that of the CPU and 0.98 times that of the GPU. These results show that the FPGA not only significantly outperforms the CPU in speed but also consumes far less power than the GPU. Moreover, using mid-to-low-end FPGAs yields performance comparable to that of commercial-grade GPUs. This technology presents a novel solution for medical imaging diagnostics, with the potential to significantly enhance the speed, accuracy, and environmental sustainability of ultrasound image analysis, thereby supporting the future development of medical care.

摘要

甲状腺癌是内分泌系统中最常见的恶性肿瘤,近年来其发病率呈稳步上升趋势。当前的中央处理器(CPU)和图形处理器(GPU)在甲状腺结节识别的处理速度、能耗、成本和可扩展性方面面临重大挑战,无法满足未来绿色、高效、便捷医疗保健的需求。为克服这些限制,本研究提出一种使用现场可编程门阵列(FPGA)的高效量化推理方法。我们采用YOLOv4-tiny神经网络模型,通过K-means ++优化算法提高软件性能,并通过8位权重量化、批归一化和卷积层融合等技术提高硬件性能。该研究基于ZYNQ7020 FPGA平台。实验结果表明,在Tn3k数据集上的平均准确率为81.44%,在中国一家三级医院的内部测试集上为81.20%。FPGA平台、CPU(英特尔酷睿i5-10200 H)和GPU(英伟达RTX 4090)的功耗分别为3.119瓦、45瓦和68瓦,能效比分别为5.45、0.31和5.56。这表明FPGA的能效是CPU的17.6倍,是GPU的0.98倍。这些结果表明,FPGA不仅在速度上显著优于CPU,而且功耗远低于GPU。此外,使用中低端FPGA可产生与商业级GPU相当的性能。该技术为医学影像诊断提供了一种新颖的解决方案,有可能显著提高超声图像分析的速度、准确性和环境可持续性,从而支持医疗保健的未来发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验