Suppr超能文献

提高商业房地产评估的准确性:一种可解释的机器学习方法。

Boosting the Accuracy of Commercial Real Estate Appraisals: An Interpretable Machine Learning Approach.

作者信息

Deppner Juergen, von Ahlefeldt-Dehn Benedict, Beracha Eli, Schaefers Wolfgang

机构信息

University of Regensburg, IRE|BS International Real Estate Business School, Regensburg, Germany.

Florida International University, Hollo School of Real Estate, FL Miami, USA.

出版信息

J Real Estate Financ Econ (Dordr). 2023 Mar 22:1-38. doi: 10.1007/s11146-023-09944-1.

Abstract

In this article, we examine the accuracy and bias of market valuations in the U.S. commercial real estate sector using properties included in the NCREIF Property Index (NPI) between 1997 and 2021 and assess the potential of machine learning algorithms (i.e., boosting trees) to shrink the deviations between market values and subsequent transaction prices. Under consideration of 50 covariates, we find that these deviations exhibit structured variation that boosting trees can capture and further explain, thereby increasing appraisal accuracy and eliminating structural bias. The understanding of the models is greatest for apartments and industrial properties, followed by office and retail buildings. This study is the first in the literature to extend the application of machine learning in the context of property pricing and valuation from residential use types and commercial multifamily to office, retail, and industrial assets. In addition, this article contributes to the existing literature by providing an indication of the room for improvement in state-of-the-art valuation practices in the U.S. commercial real estate sector that can be exploited by using the guidance of supervised machine learning methods. The contributions of this study are, thus, timely and important to many parties in the real estate sector, including authorities, banks, insurers and pension and sovereign wealth funds.

摘要

在本文中,我们使用1997年至2021年期间纳入全国房地产投资信托基金物业指数(NPI)的物业,研究了美国商业房地产领域市场估值的准确性和偏差,并评估了机器学习算法(即提升树)缩小市场价值与后续交易价格之间偏差的潜力。在考虑50个协变量的情况下,我们发现这些偏差呈现出结构化变化,提升树能够捕捉并进一步解释这些变化,从而提高评估准确性并消除结构偏差。对于公寓和工业物业,对模型的理解最为深入,其次是写字楼和零售建筑。本研究是文献中首次将机器学习在物业定价和估值中的应用从住宅用途类型和商业多户住宅扩展到写字楼、零售和工业资产。此外,本文通过指出美国商业房地产领域当前最先进估值实践中可利用监督机器学习方法的指导来改进的空间,为现有文献做出了贡献。因此,本研究的贡献对房地产领域的许多方面,包括当局、银行、保险公司以及养老和主权财富基金而言,既及时又重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c9c/10031694/a3129bfff2de/11146_2023_9944_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验