Slicker Kaitlin, Delgado Aidan, Jiang Jingwei, Tang Weichen, Cronin Adam, Blackwell Raymond E, Louie Steven G, Fischer Felix R
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States.
Nano Lett. 2024 May 1;24(17):5387-5392. doi: 10.1021/acs.nanolett.4c01476. Epub 2024 Apr 17.
Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.
横向受限的低维纳米石墨烯中的拓扑相已成为通用的设计工具,可赋予原本平凡的材料具有从拓扑半导体、量子点到本征金属带等奇异能带结构。迄今为止,定义给定晶格拓扑结构的周期性边界条件阻碍了这项技术向小分子结构的准零维(0D)领域的转化。在此,我们描述了一种多环芳烃(PAH)的合成,该多环芳烃具有由单个分子内平凡相和非平凡相之间的拓扑结界面形成的两个局域零模(ZM)。第一性原理密度泛函理论计算预测相邻零模之间存在强烈杂化,从而产生异常小的最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能隙。扫描隧道显微镜和光谱证实了9/7/9-双量子点的分子结构,并揭示了0.16 eV的实验准粒子能隙,对应于一种基于碳的小分子长波红外(LWIR)吸收体。