Delgado Aidan P, Daugherty Michael C, Dadich Christina M, Ochs Wyatt, Björk Jonas, Fischer Felix R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Materials Design Division, Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden.
Nano Lett. 2025 Jun 11;25(23):9450-9455. doi: 10.1021/acs.nanolett.5c02047. Epub 2025 Jun 2.
Bottom-up on-surface synthesis has emerged as a versatile tool to access and finely tune the electronic structure of nanographenes. The controlled generation of reactive intermediates catalyzed and stabilized by a supporting substrate has enabled the design, assembly, and characterization of a wide range of exotic tailor-made quantum materials. Even under these tightly controlled conditions, the growth of extended structures remains limited by termination processes and undesired side reactions. Here, we identify an H atom transfer as one principal contributor to the radical step growth termination that limits the on-surface growth of = 7 armchair graphene nanoribbons (7-AGNRs) on Au(111) surfaces. Analysis of 7-AGNR lengths grown from protiated and deuterated molecular precursors reveals a primary kinetic isotope effect of KIE ∼ 1.4. First-principles density functional theory calculations suggest that a concerted H atom transfer mechanism that involves the breaking of a C-H/D bond in the transition state is associated with radical chain termination.
自下而上的表面合成已成为一种通用工具,用于获取和精细调节纳米石墨烯的电子结构。由支撑衬底催化和稳定的反应中间体的可控生成,使得能够设计、组装和表征各种奇特的定制量子材料。即使在这些严格控制的条件下,扩展结构的生长仍然受到终止过程和不期望的副反应的限制。在这里,我们确定氢原子转移是限制金(111)表面上七扶手椅型石墨烯纳米带(7-AGNRs)表面生长的自由基逐步生长终止的一个主要因素。对由质子化和氘化分子前驱体生长的7-AGNR长度的分析揭示了动力学同位素效应KIE约为1.4。第一性原理密度泛函理论计算表明,一种涉及过渡态中碳-氢/氘键断裂的协同氢原子转移机制与自由基链终止有关。