Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Campus Reina Mercedes, 41012, Sevilla, Spain.
Grupo de Oceanografía de Ecosistemas, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario de Puerto Real, Puerto Real, 11519, Spain.
J Math Biol. 2024 Apr 17;88(6):64. doi: 10.1007/s00285-024-02087-8.
In this paper, we study in detail the structure of the global attractor for the Lotka-Volterra system with a Volterra-Lyapunov stable structural matrix. We consider the invasion graph as recently introduced in Hofbauer and Schreiber (J Math Biol 85:54, 2022) and prove that its edges represent all the heteroclinic connections between the equilibria of the system. We also study the stability of this structure with respect to the perturbation of the problem parameters. This allows us to introduce a definition of structural stability in ecology in coherence with the classical mathematical concept where there exists a detailed geometrical structure, robust under perturbation, that governs the transient and asymptotic dynamics.
在本文中,我们详细研究了具有 Volterra-Lyapunov 稳定结构矩阵的Lotka-Volterra 系统的全局吸引子的结构。我们考虑了最近在 Hofbauer 和 Schreiber(J Math Biol 85:54, 2022)中引入的入侵图,并证明其边代表了系统平衡点之间的所有异宿连接。我们还研究了该结构在问题参数扰动下的稳定性。这使我们能够在生态学中引入结构稳定性的定义,与经典数学概念一致,其中存在一个详细的几何结构,在扰动下是稳健的,它控制着瞬态和渐近动力学。