Suppr超能文献

具有动力资源和密度依赖扩散的 Lotka-Volterra 竞争系统。

On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion.

机构信息

Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong.

School of Mathematics, South China University of Technology, Guangzhou, 510640, People's Republic of China.

出版信息

J Math Biol. 2021 Jan 24;82(1-2):7. doi: 10.1007/s00285-021-01562-w.

Abstract

In this paper, we consider the following Lotka-Volterra competition system with dynamical resources and density-dependent diffusion in a bounded smooth domain [Formula: see text] with homogeneous Neumann boundary conditions, where the parameters [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) are positive constants, m(x) is the prey's resource, and the dispersal rate function [Formula: see text] satisfies the the following hypothesis: [Formula: see text], [Formula: see text] on [Formula: see text] and [Formula: see text]. When m(x) is constant, we show that the system () with has a unique global classical solution when the initial datum is in functional space [Formula: see text] with [Formula: see text]. By constructing appropriate Lyapunov functionals and using LaSalle's invariant principle, we further prove that the solution of () converges to the co-existence steady state exponentially or competitive exclusion steady state algebraically as time tends to infinity in different parameter regimes. Our results reveal that once the resource w has temporal dynamics, two competitors may coexist in the case of weak competition regardless of their dispersal rates and initial values no matter whether there is explicit dependence in dispersal or not. When the prey's resource is spatially heterogeneous (i.e. m(x) is non-constant), we use numerical simulations to demonstrate that the striking phenomenon "slower diffuser always prevails" (cf. Dockery et al. in J Math Biol 37(1):61-83, 1998; Lou in J Differ Equ 223(2):400-426, 2006) fails to appear if the non-random dispersal strategy is employed by competing species (i.e. either [Formula: see text] or [Formula: see text] is non-constant) while it still holds true if both d(w) and [Formula: see text] are constant.

摘要

本文考虑了如下具有动力资源和密度依赖扩散的 Lotka-Volterra 竞争系统,系统在具有齐次 Neumann 边界条件的有界光滑区域 [Formula: see text] 中演化,其中参数 [Formula: see text]、[Formula: see text]、[Formula: see text]、[Formula: see text]([Formula: see text])为正常数,m(x) 是被捕食者的资源,扩散率函数 [Formula: see text] 满足以下假设:[Formula: see text]、[Formula: see text] 在 [Formula: see text] 上成立且 [Formula: see text]。当 m(x) 为常数时,我们证明了当初值处于泛函空间 [Formula: see text] 且 [Formula: see text] 时,系统 () 存在唯一的全局古典解。通过构造适当的 Lyapunov 泛函并利用 LaSalle 不变原理,我们进一步证明了在不同参数条件下,当时间趋于无穷时,()的解会指数收敛于共存的稳定态或竞争排斥的稳定态。我们的结果揭示了一旦资源 w 具有时间动态,即使扩散率和初始值不同,而且无论扩散是否存在显式依赖,在竞争较弱的情况下,两个竞争者也可能共存。当被捕食者的资源具有空间异质性时(即 m(x) 不为常数),我们通过数值模拟展示了一个引人注目的现象,即“较慢的扩散者总是占优”(参见 Dockery 等人在 J Math Biol 37(1):61-83, 1998 年的工作;以及 Lou 在 J Differ Equ 223(2):400-426, 2006 年的工作)在竞争物种采用非随机扩散策略时(即 [Formula: see text] 或 [Formula: see text] 不为常数)不会出现,而当 d(w) 和 [Formula: see text] 都为常数时,该现象仍然成立。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验