Suppr超能文献

简单流体的熵近似

Entropy approximations for simple fluids.

作者信息

Huang Yang, Widom Michael

机构信息

Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA; University of Science and Technology of China, Hefei 230026, China; and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215213, China.

Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Phys Rev E. 2024 Mar;109(3-1):034130. doi: 10.1103/PhysRevE.109.034130.

Abstract

Liquid state entropy formulas based on configurational probability distributions are examined for Lennard-Jones fluids across a range temperatures and densities. These formulas are based on expansions of the entropy in a series of n-body distribution functions. We focus on two special cases. One, which we term the "perfect gas" series, starts with the entropy of an ideal gas; the other, which we term the "dense liquid" series, removes a many-body contribution from the ideal gas entropy and reallocates it among the subsequent n-body terms. We show that the perfect gas series is most accurate at low density, while the dense liquid series is most accurate at high density. We propose empirical interpolation methods that are capable of connecting the two series and giving consistent predictions in most situations.

摘要

基于构型概率分布的液态熵公式,针对Lennard-Jones流体在一系列温度和密度范围内进行了研究。这些公式基于熵在一系列n体分布函数中的展开。我们关注两种特殊情况。一种我们称为“理想气体”系列,从理想气体的熵开始;另一种我们称为“稠密液体”系列,从理想气体熵中去除多体贡献,并将其重新分配到后续的n体项中。我们表明,理想气体系列在低密度时最准确,而稠密液体系列在高密度时最准确。我们提出了经验插值方法,能够连接这两个系列,并在大多数情况下给出一致的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验