Suppr超能文献

一图胜千步:用于流体分子动力学模拟中扩散系数快速估计的超额熵标度

A Picture is Worth a Thousand Timesteps: Excess Entropy Scaling for Rapid Estimation of Diffusion Coefficients in Molecular-Dynamics Simulations of Fluids.

作者信息

Ghaffarizadeh S Arman, Wang Gerald J

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.

Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.

出版信息

J Chem Theory Comput. 2024 Dec 10;20(23):10362-10370. doi: 10.1021/acs.jctc.4c00760. Epub 2024 Nov 7.

Abstract

In molecular-dynamics simulations of fluids, the Einstein-Helfand (EH) and Green-Kubo (GK) relationships are frequently used to compute a variety of transport coefficients, including diffusion coefficients. These relationships are formally valid in the limit of infinite sampling time: The error in the estimate of a transport coefficient (relative to an infinitely long simulation) asymptotically approaches zero as more dynamics are simulated and recorded. In practice, of course, one can only simulate a finite number of particles for a finite amount of time. In this work, we show that in this pre-asymptotic regime, an approach for estimating diffusion coefficients based upon excess entropy scaling (EES) achieves a significantly lower error than either EH or GK relationships at fixed online sampling time. This approach requires access only to structural information at the level of the radial distribution function (RDF). We further demonstrate that the use of a recently developed RDF mollification scheme significantly reduces the amount of sampling time needed to converge to the long-time value of the diffusion coefficient. We also demonstrate favorable sample-to-sample variances in the diffusion coefficient estimate obtained using EES as compared to those obtained using EH and GK.

摘要

在流体的分子动力学模拟中,爱因斯坦 - 赫尔方德(EH)关系和格林 - 久保(GK)关系经常用于计算各种传输系数,包括扩散系数。这些关系在无限采样时间的极限情况下形式上是有效的:随着模拟和记录的动力学过程增多,传输系数估计值(相对于无限长时间的模拟)的误差会渐近地趋近于零。当然,在实际中,人们只能在有限的时间内模拟有限数量的粒子。在这项工作中,我们表明,在这个预渐近区域,基于过剩熵标度(EES)估计扩散系数的方法,在固定的在线采样时间下,比EH或GK关系具有显著更低的误差。这种方法仅需要径向分布函数(RDF)层面的结构信息。我们进一步证明,使用最近开发的RDF平滑方案可显著减少收敛到扩散系数长时间值所需的采样时间量。我们还证明,与使用EH和GK获得的结果相比,使用EES获得的扩散系数估计值在样本间方差方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ff/11635976/f245be8b325d/ct4c00760_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验